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Robust Guaranteed Cost Control for Yaw Control 
of Helicopter 

ZHAO Xin-gang, HAN Jian-da 
(State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China) 

Abstract: A new design method of robust guaranteed cost controller with adaptation mechanism was 
proposed. A linear time-invariant system with time-varying ellipsoidal uncertainty was considered. First, 
an adaptation mechanism was introduced to establish a target model with adjustable parameters. The 
adjustable parameters were determined according to the designed adaptive laws to ensure the quadratic 
stability of the error system between the state trajectory of the plant and that of the target model. 
Consequently, a robust guaranteed cost tracking controller was proposed, whose gains affinely depended 
on the designed adjustable parameters, to guarantee the stability of the closed-loop systems. The 
application of this approach to the yaw control of a small-scale helicopter mounted on an experiment 

platform shows the effectiveness. 
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直升机航向鲁棒保性能控制 
赵新刚, 韩建达 

(中科院沈阳自动化所 机器人学国家重点实验室，沈阳 110016) 

摘   要：针对具有时变不确定性且不确定性界为椭球的线性系统提出了一种新的具有自适应机制的鲁棒保性能控制

器设计方法。首先，引入一个具有可由自适应律在线调整的可调参数的目标模型，通过该参数来保证由目标模型与

被控模型所获得的误差系统渐近稳定。结合保证目标模型稳定性的设计，最终形成保证闭环系统稳定且控制器增益

仿射依赖于可调参数的鲁棒保性能跟踪控制器。应用于安装在试验平台上的小型直升机航向控制中，仿真试验表明

了该方法的有效性。 
关键词：保性能控制；鲁棒控制；自适应机制；直升机 
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Introduction1 

In most control problems, the real challenge is to raise and 
maintain performance in the presence of uncertainty [1]. It is 
often desirable to obtain guarantee of stability and performance 
against uncertainty on the physical parameters including 
stiffness, inertia, or viscosity coefficient in mechanical systems, 
aero-dynamical coefficients in flight control, the values of 
resistors and capacitors in electrical circuits. 

Helicopter as vertical take off and landing vehicles, has 
unique flying capabilities of hovering, low speed cruising and 
vertical take-off/landing. The unique flying capabilities of 
hovering, make helicopter ideal platform for application, such 
as terrain surveying, surveillance and clean-up of hazardous 
waste sites, aerial imaging and so on. A wide of considerable 
attention has been paid to analysis and synthesis about flight 
control system of helicopter [2-6]. The Unmanned Helicopter, 
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called Rotorcraft Unmanned Aerial Vehicle, is very similar to 
manned helicopter besides the small body. Last decade, there 
had witnessed remarkable progress in small-scale helicopter 
research including modeling [7] and control [8-9]. But those 
control methods were based on the accurate and fixed dynamic 
model. The complicated dynamics of helicopter lead to both 
parametric and dynamic uncertainty, so the controller should be 
designed to robust to those effects. 

Recently, a considerable amount of work has been done to 
design robust controllers for linear system with parameter 
uncertainty. Since an adequate level of performance is required 
in practice, recent literatures have focused on quadratic 
stabilizing control with some performances based on LMI or 
other methods [9-11]. The guaranteed cost control approach has 
the advantage of providing an upper bound on a given 
performance index and thus the system performance 
degradation incurred by the uncertainties is guaranteed to be 
less than this bound. While a single controller with a fixed gain 
is considered, the resulting controllers designed by these 
methods inherently become conservative.  

Adaptive method is one of the effective methods to deal 
with parameter uncertainty [12-13]. They rely on the potential of 
adjustments of uncertain parameters to assure stability of 
closed-loop systems. Most of the results in adaptive robust 



第 21 卷第 9 期                                                                                                         Vol. 21 No. 9 
2009年5月                                         系  统  仿  真  学  报                                           May, 2009 

 
• 2706 •

control are based on model reference adaptive control (MRAC) 
[14], where the outputs of closed-loop systems can track the 
pre-described referent outputs. Unfortunately, this adaptive 
method is not easily extended to treat performance tasks. It is 
worthwhile considering incorporating some kind of adaptation 
mechanism into robust control methods to enhance the 
performance of systems.  

In this paper, an adaptation mechanism is successfully 
introduced into establishing a new robust tracking guaranteed 
cost controller to reduce conservatism inherent in traditional 
robust control method with fixed gains. Here both system 
matrix A and input matrix B have time-varying parameter 
uncertainty. It belongs to an ellipsoidal set, which often appears 
in the results of set member identification in practical systems 
[15]. The gains of the proposed robust tracking controller are 
tuned on-line based on the estimations of parameter 
uncertainties to guarantee the stability and improve the transient 
behavior of the closed-loop systems. Since the complicated 
dynamics of helicopter leading to both parametric and dynamic 
uncertainty and the parameter uncertainty are time-varying, the 
proposed method will be applied to the yaw control of 
helicopter.  

The paper is organized as follows. In Section 1, the 
problem statement and preliminaries are formulated. Section 2 
gives the adaptive robust tracking control method. The 
application of the proposed controller to the yaw control of 
small-scale helicopter is given in Section 3. Finally, Section 4 
gives the conclusion. 

1  Problem Formulation and Preliminaries  

Consider the following linear uncertainty model described by  

1

( ) ( ( )) ( ) ( ( )) ( ) ( ( )) ( )
( ) ( )

x t A t x t B t u t B t t
y t C x t

ωθ θ θ ω= + +
=  (1) 

where ( ) nx t R∈ is the state, ( ) mu t R∈ is the control 
input , ( ) py t R∈  is the measured output  and ( ) lt Rω ∈ is an 
exogenous disturbance which belongs to 2[0, )L ∞ , respectively. 
The system matrices have the following time-varying structure  

0
1

( ( )) ( )
N

i i
i

A t A t Aθ θ
=

= +∑  

0
1

( ( )) ( )
N

i i
i

B t B t Bθ θ
=

= +∑  

0
1

( ( )) ( )
N

i i
i

B t B t Bω ω ωθ θ
=

= +∑  

where 0 1 0 1 0 1, , , , ,N N NA A A B B B B B Bω ω ω are known 
constant matrices. The time-varying parameter vector 

( ) Nt Rθ ∈  represents unknown parameters which belong to the 
N-dimensional ellipsoidal set expressed as 

2{ | ( ) ( ) 1}N TR t tθ θ θ−∆ ≡ ∈ Σ ≤  (2) 

1diag( , )Nσ σΣ =  (3) 

where N NR ×Σ∈ represents the size of the ellipsoid. 

Remark 1: The ellipsoidal set can be obtained by set 
membership identification method. Set membership identification 
is one of the identification techniques that uses a priori 
assumptions about a parametric model to constrain the solutions 
to certain sets.  

Control Objective: design a robust controller such that: 
a) The closed-loop system is stable for all ( )tθ ∈∆ with a 

guaranteed level of disturbance attenuation. 
b) The output ( )y t  tracks the reference signal ( )dr t  

with zero steady-state error, that is lim ( ) 0
t

e t
→∞

= ， where 
( ) ( ) ( )de t r t y t= − . 

It is well known that an integral control can effectively 
eliminate the steady tracking error. In order to obtain a robust 
tracking controller with state feedback plus tracking error 
integral, the following augmented state-space description is 
introduced. 

( ) ( ( )) ( ) ( ( )) ( ) ( ( )) ( )ax t A t x t B t u t B t tωθ θ θ ω= + +  (4) 

where 

0
( ) ( ( )d ) ( )

Tt T Tx t e x tτ τ⎡ ⎤= ⎢ ⎥⎣ ⎦∫ , ( ) [ ( ) ( )]T T T
a dt r t tω ω=  

and 
10

( ( ))
0 ( ( ))

C
A t

A t
θ

θ
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

    0
( ( ))

( ( ))
B t

B t
θ

θ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

0
( ( ))

0 ( ( ))
I

B t
B tω
ω

θ
θ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

Then the design problem can be reduced to the following: 
find a robust controller ( )u t  such that: 

a) The augmented closed-loop system is robust for stable 
for all ( )tθ ∈∆ . 

b) Transient performance improves in time-response. 

2  Adaptive Robust Tracking Controller 
Design 

In this section, we introduce a target model with adjustable 
parameters which is determined so as to ensure quadratic 
stability of the error system between the state trajectory of the 
plant and that of the target model. Then a controller for the 
target model is designed. Consequently, an adaptive robust 
controller to improve transient behaviour in time-response is 
established. 

2.1 Adjustable Target Model and Parameter 
Adjustment Law 
In order to obtain on-line information on the parameter 

uncertainty, we introduce the following target model described by 

0
ˆ ˆ( ) ( ( )) ( ) ( ( )) ( ),   (0)v v vx t A t x t B t v t x xθ θ= + =  (5) 

where ˆ( ) Nt Rθ ∈ denotes the adjustable parameter vector, and 
let the matrices ˆ( )A θ and ˆ( )B θ have the same structure as the 
system matrices of (4). If we define the error vector 
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as ve x x= − , then the error equation between (4) and (5) is 
written as  

1

ˆ( ) ( )( ) ( )( ) ( ) ( )

ˆ( ) ( )( ) ( ( ) ( ))( ) ( ) ( )

N

i i i v i a
i

v a

e A e B u v Ax Bv B t

A e B u v E x E v B t

ω

ω

θ θ θ θ θ ω

θ θ θ θ θ ω
=

= + − + − + +

= + − + + − +

∑
 (6) 

where ( )( ) n p N
vE x R + ×∈ , ( )( ) n p NE v R + ×∈ is given by 

1( ) [ | | ]v v N vE x A x A x= , 1( ) [ | | ]NE v B v B v=  

By considering the control input  
ˆ( ) ( ) ( ) ( )u t v t F e tθ= +  (7) 

where 0 1
ˆ ˆ( ) i

N
ii

F F Fθ θ
=

= +∑ , 0 1, NF F F  are the error 
feedback to be designed. Then (6) can be written as 

ˆ ˆ( ( ) ( ) ( )) ( ( ) ( ))( ) ( )v ae A B F e E x E v B tωθ θ θ θ θ ω= + + + − +  (8) 

In the following design, we choose the performance indexes  

0
( ) ( )

t T T
tJ e Qe u v R u v dt⎡ ⎤= + − −⎣ ⎦∫  (9) 

where, 1 2[ ]Q diag Q Q= ， 1 R l lQ ×∈ and 2 R n nQ ×∈ are 
symmetric positive semi-definite and R m mR ×∈ is symmetric 
positive definite. 

Here, for the error system (8), we determine the parameter 
vector ˆ( )tθ and the gain matrix ˆ( )F θ so as to ensure quadratic 
stability  and performance index. 

Theorem 1: Consider the error system (8) and the 
performance index tJ , for a given positive constant γ , if 
there exists symmetric matrix M and matrices 0H , iH , 
i = 1 N , the following linear matrix inequality holds  

1/2 1/2

2

ˆ( ) ( ) ( ) ˆ( ) ( )
ˆ( ) ( ) ( )

0* 0 0
* * 0
* * *

T T T
TMA H B

B H R MQ
A M B H

I
I

I

ω
θ θ θ

θ θ
θ θ θ

γ

⎡ ⎤+
⎢ ⎥
+ +⎢ ⎥
⎢ ⎥ <−⎢ ⎥
⎢ ⎥−
⎢ ⎥

−⎣ ⎦

 

for all ˆ( ),  ( )t tθ θ ∈∆  (10) 

where, * denotes the symmetric part , 
1,M P−= 0 1

ˆ ˆ( ) i

N
ii

H H Hθ θ
=

= +∑ ,  

0 0H F M= , i iH F M= ， 1i N= . 

And also if ˆ( )tθ is determined according to the adaptive law 
2[ ( ) ( )]   if [ ( ) ( )] 0

ˆ [ ( ) ( )]( )
ˆ( )                              if [ ( ) ( )] 0

T T
v T T

vT T
v

T T
v

E x E v Pe E x E v Pe
E x E v Pet

t E x E v Pe

θ

θ −

⎧ Σ +
+ ≠⎪ Σ += ⎨

⎪
+ =⎩

 (11) 

where 0, 0lim ( )vt tτ τ−
> →= −  and the initial guess of the 

parameter ˆ( )tθ , denoted by ˆ(0)θ , is supposed to be chosen 
from on the boundary surface of the ellipsoidal set ∆ . Then 
the error system (8) is stablized and the upper bound of 
performance index is given by 

2 1

0
( ) ( ) (0) (0)

t T T
t a aJ t t dt e M eγ ω ω −≤ +∫  

Proof: By the Schur Complement formula, (10) is equivalent to  

2

ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )
1 ˆ ˆ                ( ) ( ) 0

T T T

T T

MA H B A M B H

B B MQM H RHω ω

θ θ θ θ θ θ

θ θ
γ

+ + + +

+ + <
 

Moreover, by pre- and post-multiplying 1M P−= on above 
inequality, it follows 

2

ˆ ˆ( ( ) ( ) ( )) ( ( ) ( ) ( ))
1 ˆ ˆ                ( ) ( ) 0

T T T

T T

A B F P P A B F

PB B P Q F RFω ω

θ θ θ θ θ θ

θ θ
γ

+ + + +

+ + <
 (12) 

Choose the following candidate Lyapunov function 
( ) ( )TV e t Pe t=  (13) 

Then from the derivative of V along the error system (8), 
we can get  

2

ˆ ˆ[( ( ) ( ) ( )) ( ( ) ( ) ( ))]
ˆ2 ( ( ) ( ))( ) 2

ˆ2 ( ( ) ( ))( ) 2

T T

T T
v a

T T
v a

V e A B F P P A B F e

e P E x E v e PB

e e P E x E v e PB
ω

ω

θ θ θ θ θ θ

θ θ ω

α θ θ ω

= + + + +

+ − +

≤ − + + − +

 

where  

max
ˆ ˆ[( ( ) ( ) ( )) ( ( ) ( ) ( ))] 0TA B F P P A B F

θ

α θ θ θ θ θ θλ
∈∆

= − + + + >  

According to Lyapunov stability theorem, it can be 
assumed that 0aω ≡ , when only the stability for system (8) is 
concerned. Setting the parameter adjustment law as (11) results 
in 2V eα≤ − , because using (2) the following relation holds 

1( ( ) ( )) ( ( ) ( ))

( ( ) ( ))

ˆ( ( ) ( ))

T T
v v

T
v

T
v

e P E x E v e P E x E v

e P E x E v

e P E x E v

θ θ

θ

−+ ≤ + Σ Σ

≤ + Σ

= +

 

Therefore the stability of the error system (8) is ensured. 
Furthermore, from (12) 

0

0

20

2

0 0 0

2

0 0

( ) ( )

ˆ ˆ[ ( ) ( )]

1ˆ ˆ( ( ) ( ) ( )) ( ( ) ( ) ( ))

1 1[ ] ( )( )

[ ]

t T T
t

t T T

t T T T

t t tT T T T T T
a a a a

t t T
a a

J e Qe u v R u v dt

e Q F RF edt

e A B F P P A B F PB B P edt

d v dt e PB e PB dt

d v dt

e

ω ω

ω ω

θ θ

θ θ θ θ θ θ
γ

γ ω ω γω γω
γ γ

γ ω ω

⎡ ⎤= + − −⎣ ⎦

= +

⎡ ⎤
< − + + + +⎢ ⎥

⎣ ⎦

= − + − − + − +

≤ − +

≤

∫
∫

∫

∫ ∫ ∫

∫ ∫
2

0
(0) (0)

tT T
a aPe dtγ ω ω+ ∫

 

Thus,  
2

0
(0) (0)

tT T
t a aJ e Pe dtγ ω ω≤ + ∫  

Remark 2: The adjustable parameter ˆ( )tθ satisfies 
2ˆ ˆ( ) ( ) 1t tθ θ−Σ = , which means that ˆ( )tθ is adjusted on the 

boundary surface of the prespecified ellipsoidal set ∆ . 
Remark 3: In order to transform (5) to a convex problem, 

a substitute set for the ellipsoidal set ∆  can be used in 
Theorem 1, that is 

{ ( ) | ( ) , 1 }N
i it R t i Nθ θ σ∆ = ∈ ≤ =  

Then since ( ),tθ ˆ( )tθ appear affinely in (5), the problem 
can be reduced to check (10) for all ( ),tθ ˆ( ) vextθ ∈∆ , where 

{ |  or }N
vex i i i iRθ θ σ θ σ∆ = ∈ = = −  denotes the set of 

2N vertices of ∆ . 
Remark 4: The error feedback gain 0 1, NF F F  can be 

chosen to minimize the upper bound of the performance index 
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Jt  according to  the following optimization problem 
min  Trace (T) 

s.t.    (10)  and 0
T I
I M
⎡ ⎤

>⎢ ⎥
⎣ ⎦

 

2.2 Adjustable Controller Design for Target Model 

Since the parameter ˆ( )tθ is available on-line, we will 
establish ( )v t in a state feedback form with a parameter- 
dependent gain ˆ( )K θ  

ˆ( ) ( ( )) ( )vv t K t x tθ=  (14) 
where 

0
1

ˆ ˆ( ( )) ( )
N

i i
i

K t K t Kθ θ
=

= +∑  (15) 

Substituting (14) and (15) into (5) results in the close-loop 
form 

ˆ ˆ ˆ( ) ( ( ) ( ) ( )) ( )v vx t A B K x tθ θ θ= +  (16) 

Choose cost function 

0
( )dT T

v vJ x Qx v Rv t
∞

= +∫  (17) 

Theorem 2:  The target model (5) with the adjustable 
controller (14) is stable if there exists a positive definite matrix 
S and matrices 0, , ( 1 )i iW W M i N=  such that for all ˆ

vexθ ∈∆  
2

1
1

1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( )

* 0 0
* *

N
T T T T

i i
i

SA W B A S B W M S W

Q
R

θ θ θ θ θ θ θ θ
=

−

−

⎡ ⎤+ + + +⎢ ⎥
⎢ ⎥

− <⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

∑
 (18) 

0,T T
i i i i iW B BW M+ + ≥ 0iM ≥ , 1i N=  (19) 

where * 1,S P −= 0
1

ˆ ˆ( ) ( )
m

i i
i

W W t Wθ θ
=

= +∑ , 0 0W K S= i iW K S= , 

1i N= . 

Moreover, the upper bound of the cost function (17) with 
respect to ˆ( )tθ ∈∆  is given as 

* 1
0 0

ˆ(0) (0)   for all ( )T T
v vJ x P x x S x tθ−≤ = ∈∆  (20) 

Proof: Choose the following Lyapunov function 
*( ) ( )T

v vV x t P x t=  

Then if follows  
*

0

*

0

d( )d (0) (0)
d

    (0) (0)

T T T
v v v v

T T
v v v v

J x Qx v Rv V t x P x
t

x x x P x

∞

∞

≤ + + +

≤ Ψ +

∫

∫
 

where 
* *ˆ ˆ ˆ ˆ ˆ ˆ( ( ) ( ) ( )) ( ( ) ( ) ( ))

ˆ ˆ( ) ( )

TA B K P P A B K
TQ K RK

θ θ θ θ θ θ

θ θ

Ψ = + + + +

+
 

If (18) and (19) hold, by Lemma 3.1 and Remark 3.6 of [16] and 
we have for all ˆ( )tθ ∈∆  

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )
ˆ ˆ ˆ ˆ      ( ) ( ) ( ) ( ) 0

T T T

T

SA W B A S SQS

B W W RW

θ θ θ θ

θ θ θ θ

+ + + +

+ <
 

which implies for all ˆ( )tθ ∈∆ , 0Ψ < . Then 
* 1

0 0(0) (0) .T T
v vJ x P x x S x−≤ =  

The following is algorithm to optimize the cost function 
(17) of target model. 

Algorithm: The cost function J is minimized if the 
following optimization problem is solvable 

0 1, , ,
min  Tr(Z)

NZ S W W W
 

s.t.  (18), (19) and 0
Z I
I S

⎡ ⎤
≥⎢ ⎥

⎣ ⎦
 

After designing adjustable controller ( )v t for target model, 
now the controller ( )u t  has the following form 

ˆ ˆ( ) ( ( )) ( ) ( ( )) ( )vu t K t x t F t e tθ θ= +  

where ˆ( )tθ is determined by (11), 0 , iK K , 0F , iF , 1i N=  
can be obtained from Theorem 1 and Theorem 2, respectively. 

Total system is guaranteed to be stable because both target 
model and error system have been stabilized. 

Remark 5: The adaptive robust tracking controller design 
method in Section 2 is investigated for linear systems with 
affine time-varying ellipsoidal uncertainty (21). Once some 
practical systems can be described by the general model (22), 
the presented controller design method can be applied to the 
practical systems. Next, the application to the yaw control of a 
small-scale helicopter will show the effectiveness of the 
proposed method. 

3  Small–scale Helicopter Control 

3.1 Modelling Yaw Dynamic 
In this paper a framework of the simulation model for the 

helicopter-platform (see Fig. 1) is set up using rigid body 
equations of motion of the helicopter fuselage. In hovering and 
low-velocity flight, the torque generated by main and force 
generated by tail rotor are dominant [17]. By simplifying the 
fuselage and vertical fin damping, the yaw dynamics can be 
rewritten as: 

1 2zz mr tr tr

r
I r Q T l b r b
ϕ

ϕ
=⎧

⎨ = − + + +⎩
 (21) 

where mrQ is the torque of main rotor, trT is the thrust of tail 
rotor, ltr is the distance between the tail rotor and z-axis, b1 and 
b2 are damping constants. The expressions of trT and mrQ has 
been given in [18]: 

21
1 2 2 2 12 ( 4 )tr tr trT C C C C Cθ θ= + + +  (22) 

with 
2 3 31

1 tr06 ( )tr tr tr tr trC a b c R Rρ= Ω −  

2 2 21
2 08 2 / ( )tr tr tr tr tr tr trC a b c R R Rρ ρπ= Ω −  

where ρ, atr, btr, ctr, Ωtr, θtr, rtr, vtr1 Atr are respectively, 
density of air, slope of the lift curve, number of the rotor, chord 
of the blade, speed of the tail rotor, pitch angle, radial distance, 
induced speed of the tail rotor and area of the tail rotor disc. 
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2 2 2 3 3
2 3 4 4 4 3 02

2 2 2 3 3
3 4 4 4 3 0

2 2 2 2 2 2 4 4
2 3 0 3 0 1 0

2 2 4 4 2 2 2
0 0 4 02

2
2 4 4 3

{8 (2 4 )( )
48

4 (2 4 )( )

6 ( ) 6 ( ) 6 ( )}

{6 ( ) 3 ( )
48
3 4

mr
mr d mr mr

mr

d d

d

d mr

cQ C R C C C C C R R
R

a R C C C C C R R

C C R R aC R R C R R R
c

C R R R aC R R
R

C C C C

θ ρπ θ θ
π

ρπ θ θ

ρπ

ρπ
π

θ

= Ω + − + − +

Ω + − + − +

− + − + Ω − +

Ω − + − +

+ 2 2 2 2 2
0 4 4 3 0

2 2 2 3 3
1 3 4 4 4 3 0

( ) 3 4 ( )+

4 (2 4 )( )d mr mr

R R aC C C R R

C R C C C C C R R

θ

ρπ θ θ

− + + −

Ω + − + − +

 

2 2 2 2 4 4 21
2 4 0 2 083 ( )} ( )d d mrC C R R C c R Rρ θ− + Ω −  (23) 

with  2 3 31
3 06 ( )C abc R Rρ= Ω −  

  2 2 21
4 08 2 / ( )C abc R R Rρ ρπ= Ω −  

where R, θmr are respectively, radial and pitch angle of main 
rotor, , ,a α 1, , , ,r c vφ Ω are respectively slope of the lift curve, 
the angle of attack of the blade element, speed radial distance, 
chord of the blade, inflow angle, induced speed and rotor speed 
of the main rotor. 

From (21) we can see that there exists couplings between 
main rotor torque Qmr and tail rotor thrust Ttr. and (22) and (23) 
further demonstrate that the models are highly nonlinear and 
too complex to be used for control design. Instead of the 
dynamics described by (22) and (23), a simplified model is 
proposed for control design [18]: 

2 1 0
2

zz

2
2 1 0 1 2

( )

( )
Q mr Q mr Q

T tr T tr T tr

r
I r k k k

k k k l b r b

ϕ

θ θ

θ θ ϕ

=⎧
⎪ = − + +⎨
⎪ + + + + +⎩

 
(24)

 

The nonlinear dynamic can be presented by a state space 
description : 

( , )x f x u ζ= +  

where, ζ is the disturbance due to main rotor, wind and so on, 
[ ]Tx rϕ= , tru θ= .  
Furthermore (24) can be linearized at a trim point ( 0 0,x u )  
x Ax Bu ζ= + +  (25) 

with 

0 0,
1 2

0 1
A= |x u

f
a ax
⎡ ⎤∂

= ⎢ ⎥∂ ⎣ ⎦
, 0 0,

3

0
B= |x u

f
au
⎡ ⎤∂

= ⎢ ⎥∂ ⎣ ⎦
 

where, a3= 1 1
2 0 1 32 zzT tr zz tr T trk l I k l I bθ− −+ + Ω ,a1= 1

2 zzb I − , a2 = 1
1 zzb I − .  

3.2 Simulations  
The proposed controller design method is verified by the 

simulation model obtained from the helicopter-on-arm platform, 
shown as Fig. 1. A small-scale electrical helicopter is mounted 
at the end of a two-DOF arm, and the weight of the helicopter is 
perfectly balanced at the other side of the arm. First, the 
parameters of the nonlinear yaw dynamic model are identified 

2
1 2 3 4 5tr tr tr

r
r k r k k k k
ϕ

θ θ θ ϕ

=⎧⎪
⎨

= + + + Ω +⎪⎩
 (26) 

with, k1 = -1.3828, k2 = 63.0923, k3 = 11.6514, k4 = -0.1380 k5= 
-3.3286, 1200Ω= . System (26) can be linearized at trim point  

 
Fig.1  Helicopter on arm 

( 0 0,x u ), with 0 [30  0]Tx = , 0 6.7u = , and the corresponding 
system matrices are as follows: 

0
0 1

3.3286 1.3828
A ⎡ ⎤

= ⎢ ⎥− −⎣ ⎦
, 1

0 0
3.3286 0

A ⎡ ⎤
= ⎢ ⎥−⎣ ⎦

, 

2
0 0
0 1.3828

A ⎡ ⎤
= ⎢ ⎥−⎣ ⎦

, 3
0 0
0 0

A ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 0
0

72.2633
B ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 

1
0
0

B ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 2
0
0

B ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 3
0

72.2633
B ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

Parameter uncertainty  
2 1, (0.3,0.3,0.35)T diagθ θ−Σ ≤ Σ =  

In the following simulations, the initial conditions are: 
(0) 0 ϕ = ,  (0) 0r = . The tracking command of ϕ  is 0,dϕ =  

off0 t t≤ ≤ . The following disturbance is used: 

1
10     10 t 11( )
0        else

s
ζ

≤ ≤⎧
= ⎨
⎩

  2
10     10 t 11( )
0        else

s
ζ

≤ ≤⎧
= ⎨
⎩

 

Next, the proposed adaptive robust tracking controller 
design method in Section 2 is applied to the yaw control of the 
helicopter. The corresponding gains , , 0, ,3i iF K i =  are the 
following: 

F0 = [10.0242  -8.1354   -1.1132] 
F1 = [0.0000   0.0193    -0.0000 ] 
F2 = [-0.0000  0.0000     0.0035] 
F3 = [-1.4375  1.1666      0.1596] 
K0 = [1.9066   -3.7309    -1.3803] 
K1 = [0        0          0] 
K2 = [0        0          0] 
K3 = [-0.1868   0.3656    0.1353 ] 

The traditional guaranteed controller with fixed gains [19] Kf = 
[4.2030  -9.2801  -1.2488] has also been implemented on 
yaw dynamic of the helicopter. 

From Fig.2 and Fig.3, it is easy to see that the closed-loop 
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Fig. 2 Yaw behaviours with the fixed robust controller and the proposed 

robust controller 
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Fig.3 r behaviours with the fixed gain robust controller and the proposed 

robust controller 

system is stable and has zero tracking error even in presence of 
disturbance. Moreover, the proposed adaptive robust controller 
can improve the system performance in the presence of 
disturbance and time-varying uncertainty, compared with the 
traditional robust controller with fixed gains. 

4  Conclusions 

In this paper, a new guaranteed controller design method is 
proposed for linear uncertain systems. The considered 
uncertainties are assumed to be time-varying ellipsoidal 
uncertainties. An adaptation mechanism is introduced to 
construct a variable gain guaranteed cost tracking controller to 
reduce conservatism inherent in traditional robust control with 
fixed gains and improve transient performance in time-response. 
The application of this approach to the yaw control of a 
small-scale helicopter has demonstrated the effectiveness of the 
proposed method. 
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