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Summary

In this paper, based on a distributed particle filter, two tracking algorithms are proposed for tracking mobile targets

in cluster-based underwater sensor networks (USNs). Both tracking algorithms run local particle filter sequentially

at each cluster along target trajectories, but they adopt different methods of selecting measurements from sensor

nodes to balance the information contribution against the cost. Performance metrics are proposed and discussed in

terms of tracking performance, communication cost, energy cost, and tracking response time. Simulations are

conducted to quantitatively compare the proposed algorithms as well as another tracking algorithm based on

extended Kalman filter (EKF). Our results indicate that one tracking algorithm achieves higher tracking accuracy

while the other achieves dramatic reduction of communication cost, energy cost, and tracking response time.

Furthermore, performance of two tracking algorithms has been studied in terms of detection threshold and sensor

density. Copyright # 2008 John Wiley & Sons, Ltd.
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1. Introduction

In underwater sensor networks (USNs) [1,2], sensor

nodes can perform sensing jobs with limited capacity

of data processing and communication via acoustic

modems. USNs have many potential civil and military

applications such as monitoring marine environment

for scientific exploration, commercial exploitation, and

coastline protection. One important application is of

tracking mobile targets, that is, on-demand target loca-

tion estimation with measurements from sensor nodes.

Major challenges in designing tracking algorithms

in USNs include (1) high power consumption with

limited and unreplenishable power resources, and (2)

communication constraints [3] such as limited band-

width capacity, large propagation delay, and low

reliability. Due to these unique characteristics of

USNs, distributive and collaborative processing of mea-

surements from multiple sensor nodes is recommended

for reliable target tracking in this paper. Furthermore,

it is desirable to minimize the cost of information

processing in target tracking.
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In this paper, we design two tracking algorithms

based on a distributed particle filter to track mobile

targets in USNs. Sensor nodes are organized in a

cluster-based architecture. To distribute computation

load and communication load over the entire USN,

both tracking algorithms run local particle filter se-

quentially at each cluster along the target trajectory.

To balance the information contribution against the

cost, the first tracking algorithm makes use of mea-

surements beyond an adjustable detection threshold.

Furthermore, we add an adaptive sensor selection step

in the second tracking algorithm to reduce commu-

nication load and computation load. Performance

metrics are proposed and discussed in terms of track-

ing performance, communication cost, energy cost,

and tracking response time. Simulations are con-

ducted to quantitatively compare the proposed algo-

rithms as well as another tracking algorithm based on

extended Kalman filter (EKF). Furthermore, perfor-

mance of two tracking algorithms has been studied in

terms of detection threshold and sensor density.

The remainder of this paper is organized as follows.

In Section 2, we summarize the related research work

along with a comparison with our work presented in

this paper. Network, target, and sensor models are

introduced in Section 3. In Section 4, we present two

tracking algorithms based on a distributed particle

filter for USNs. Performance metrics are proposed

and discussed in Section 5. Section 6 presents the

simulation results and analysis. Finally, Section 7

concludes the paper and describes directions for

future work.

2. Related Work

Target tracking in deployable autonomous distributed

system (DADS) has been studied in References [4–7].

In Reference [4], Mori et al. described two possibi-

lities of tracking algorithms: one of them is to localize

a target position from independent time difference of

arrival (TDOA) measurements, requiring tremendous

communication; the other is Doppler tracking, which

is vulnerable to the target maneuvering. Puranik and

Jannett [5] investigated various data fusion algorithms

based on Kalman filter for target tracking. In Refer-

ence [6], an existing target tracking approach, dis-

tributed predictive tracking [7], was augmented using

both stand-alone fuzzy logic and fuzzy logic with

reinforcement learning techniques, to predict loca-

tions of targets in a manner which reduces the number

of communication messages and sensing operations;

target locations were obtained by aggregating location

information from three sensors, which takes triangula-

tion as an example. Recently, Amit et al. [8] explored

the problem of activating an optimal combination of

sensors to track a target moving through a network of

underwater sensors; a new myopic sensor scheduling

method executed on a scheduler (e.g., an aircraft or a

surface ship) was developed to minimize predicted

approximate tracking error subject to constraints on

sensor usage and sensor costs.

Particle filter [9], which uses a set of particles to

effectively represent the prior and posterior likelihood

of states, is applicable for target tracking. Several

particle filter based tracking algorithms are proposed

for terrestrial sensor networks [10–12]. In Reference

[10], Coates proposed a distributive particle filter

algorithm in which each sensor node maintains a

separate particle filter; however, this algorithm suffers

high overhead of communication and computation.

Sheng et al. [11] proposed two distributed particle

filters, named as DPF-I and DPF-II, in which, obser-

vations by the sensors are divided into a set of disjoint

uncorrelated cliques, and local particle filter runs

sequentially at each clique or in parallel. Ma and

Ng [12] proposed a tracking algorithm which is very

close to DPF-I except using an objective function as a

mixture of gain and cost to select sensing node;

however, metrics of gain and cost, which may take

various forms depending on the application and as-

sumptions, have not been detailed in this algorithm;

furthermore, they integrated EKF as a core com-

ponent to propagate particles to high likelihood

area.

In this paper, we focus on target tracking based on a

distributed particle filter in a two-dimensional USN,

where power consumption and communication con-

straints are stricter. There is a trade-off between

performance and cost. Therefore, it becomes critical

to carefully select sensor nodes that participate in

collaboration. To reduce computation load and

communication load, we study different methods of

selecting measurements from sensor nodes for dis-

tributed particle filter based tracking algorithms.

Moreover, we propose a performance evaluation sys-

tem for the design of tracking algorithms for USNs.

3. Models for Underwater Tracking

In this section, network, target, and sensor models are

introduced for the design of tracking algorithms for

USNs.
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3.1. Network Model

A two-dimensional USN [13] consists of sensor nodes

which are anchored to the bottom of the ocean/lake to

perform collaborative monitoring tasks over a given

region, as shown in Figure 1. Sensor nodes reside at

known static positions along the ocean floor that are

assumed to be uniformly distributed with a mean

sensor density of � per unit of area. They are orga-

nized in a cluster-based architecture and each cluster

has a cluster head (CH) node. Since using long fiber

lines to connect the sensor nodes to CH nodes makes it

vulnerable to trawling and dredging activities, and

sometimes it is difficult to install wires, sensor nodes

communicate with CH nodes by means of wireless

acoustic links. CH nodes collect and integrate mon-

itored data from sensor nodes and relay data from the

ocean bottom network to a surface station, which is

able to communicate with an onshore sink and/or to a

surface sink.

3.2. Target Model

Assume that there is only one target moving within a

plane at a known depth, according to the standard

second-order model, as shown in Figure 2. It is

assumed that the ocean floor is flat, and h is the

vertical distance between the ocean floor and the

plane within which the target is moving.

Xk ¼
1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1

2
664

3
775Xk�1 þ

T2=2 0

T 0

0 T2=2
0 T

2
664

3
775Wk�1

ð1Þ

where Xk ¼ ½xðkÞ; _xðkÞ; yðkÞ; _yðkÞ�T a state vector;

Wk�1 ¼ ½wxðk � 1Þ;wyðk � 1Þ�T a system noise;

ð _xðkÞ; _yðkÞÞ a velocity vector, ðxðkÞ; yðkÞÞ the two-

dimensional position of the target at time k; wxðk � 1Þ
and wyðk � 1Þ are both zero-mean Gaussian variable;

and T is the sampling time.

3.3. Sensor Model

In this research, each sensor node has an acoustic

sensor. A simplified model for an acoustic sensor

consists of acoustic sound pressure measurement

model (wide-band processing), base frequency mea-

surement model (narrow-band processing), and acous-

tic spectrum pattern model (narrow-band processing)

[4]. Like the target model, sensor model described in

this section is only for the design of tracking algo-

rithm, so that a simple sound pressure model is

chosen. At time k, the received sound pressure of

the sensor node j is

zjðkÞ ¼ SðkÞ
½xðkÞ � xj�2 þ ½yðkÞ � yj�2 þ h2

þ "jðkÞ ð2Þ

where SðkÞ is the target’s source-level sound pressure;
ðxðkÞ; yðkÞÞ the two-dimensional position of the target

at time k; ðxj; yjÞ the two-dimensional position of the

sensor node j; and "jðkÞ is an independent zero-mean

random variable. It is assumed that all measurements

from sensor nodes are independent.

4. Tracking Algorithms Based on
DPF for USNs

In this section, we start with a brief review of a generic

particle filter. Then we present two tracking algo-

rithms based on a distributed particle filter for USNs,

denoted as DPFTA-I and DPFTA-II, respectively.Fig. 1. Two-dimensional underwater sensor network.

Fig. 2. Target moving plane.
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4.1. Particle Filter

In target tracking, normally the system model and

measurement model are adopted as follows:

xk ¼ Fkðxk�1; vk�1Þ ð3Þ

zk ¼ Hkðxk; nkÞ ð4Þ

where fxk; k 2 Ng is a state vector; fzk; k 2 Ng a

measurement vector at time k; N the set of natural

numbers; Fk : <nx �<nv ! <nxand Hk : <nx �<nn !
<nz are possibly nonlinear functions; fvk�1; k 2 Ng an

independent and identically distributed (i.i.d.) process

noise; fnk; k 2 Ng an i.i.d. measurement noise; and

nx, ny, and nz are dimensions of xk, vk�1, and nk,

respectively.

Assume that the initial probability distribution

function (PDF) pðx0jz0Þ ¼ pðx0Þ of the state vector

is known as the prior, where z0 is the set of no

measurements. Then, in principle, the PDF pðxkjz1:kÞ
may be obtained, recursively, in two stages as follows,

prediction in Equation (5) and update in Equation (6).

pðxkjz1:k�1Þ ¼
Z

pðxkjxk�1Þpðxk�1jz1:k�1Þ dxk�1 ð5Þ

pðxkjz1:kÞ ¼ pðzkjxkÞpðxkjz1:k�1Þ
pðzkjz1:k�1Þ ð6Þ

In Equation (5), the probabilistic model of the state

evolution pðxkjxk�1Þ is defined by the system model

(3) and the known statistics of vk�1. In Equation (6),

pðzkjz1:k�1Þ ¼
R
pðzkjxkÞpðxkjz1:k�1Þ dxk is the normal-

izing constant, and the likelihood function pðzkjxkÞ is
defined by the measurement model (4) and the known

statistics of nk. The recurrence relations (5) and (6)

form the basis for the optimal Bayesian solution. The

sampling important resampling (SIR) filter, described

in Table I—Algorithm 1, is a Monte Carlo method

which can be applied to recursive Bayesian filtering

problems [9]. fxik; i ¼ 1; � � � ;NSg is the set of parti-

cles with associated weights f!i
k; i ¼ 1; � � � ;NSg to

represent the required posterior density function.

NS is the number of particles. K is the last sample

time. fzjðkÞ; j ¼ 1; � � � ;NðkÞg is the set of measure-

ments at time k. NðkÞ is the number of measurements

at time k. U½a; b� is the uniform distribution on the

interval ½a; b�.

4.2. Tracking Algorithm Based on Distributed
Particle Filter

In a USN, two major challenges in designing tracking

algorithms are power consumption and communica-

tion constraints such as limited bandwidth capacity,

large propagation delay, and low reliability. Ob-

viously, distributed implementation of tracking algo-

rithm is a better choice. We propose two tracking

algorithms based on the distributed particle filter, in

order to distribute the computation load and commu-

nication load over the entire USN.

4.2.1. DPFTA-I

Based on the hierarchical network architecture, a local

SIR particle filter runs sequentially to update the

posterior PDF of the target state. Only one cluster is

active with SIR particle filter running at one time.

However, not all sensor nodes in the current active

cluster provide useful information that improves

the estimate of target state. Some information may

be even redundant. To balance the information con-

tribution against the cost, sensor nodes whose mea-

surements are beyond an adjustable detection

threshold Dt, report measurements to the CH node.

The CH node calculates the posterior PDF of the

target state from these measurements. If the CH

node does not receive any measurements, the estimate

of target state is replaced with the prediction. When

the target moves out of the current cluster, the current

CH node forwards its last estimation results (i.e.,

estimation of the state and covariance) to the next

CH node which is the best candidate to track the

Table I. Algorithm 1: SIR particle filter.

1. Initialize k ¼ 0
For i ¼ 1; � � � ;NS Draw xi0 � pðx0Þ

2. For k ¼ 1; � � � ;K
2.1. For i ¼ 1; � � � ;NS

– Draw xik � pðxkjxik�1Þ
– Calculate !i

k ¼ pðz1ðkÞ; � � � ; zNðkÞðkÞjxikÞ
– Normalize !i

k ¼ !i
k

�PNS

i¼1 !
i
k

2.2. ½fxjk; !j
kgNS

j¼1� ¼RESAMPLE½fxik; !i
kgNS

i¼1�
– Initialize the cumulative distribution function (CDF): c0 ¼ 0
– For i ¼ 1; � � � ;NS Construct CDF: ci ¼ ci�1 þ !i

k

– Start at the bottom of the CDF: i ¼ 1
– Draw a starting point: u0 � U½0; 1=NS�
– For j ¼ 1; � � � ;NS

� Move along the CDF: uj ¼ u0 þ ðj� 1Þ=NS

� While �j > ci, i ¼ iþ 1

� Assign sample and weight: x
j
k ¼ xik , !

j
k ¼ 1=NS

2.3. Estimate the state and covariance:

x̂k ¼
PNS

i¼1 !
i
kx

i
k, Ck ¼

PNS

i¼1 !
i
kðxik � x̂kÞðxik � x̂kÞT
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mobile target. Then the new CH node makes a new

estimation based on the estimation results from the

previous CH node as well as new measurements from

the sensor nodes in its own cluster. This procedure is

repeated continuously until the target moves out of the

monitored region.

The detection threshold can be defined beforehand.

Also, it can be changed on demand according to

the performance of the tracking algorithm, by send-

ing a command. We will study performance of the

tracking algorithms in terms of detection threshold

in Subsection 6.3. The pseudo-code of DPFTA-I is

shown in Table II—Algorithm 2, where Ka and Kb are

the last sample times in the clusters of CH node CHa

and CH node CHb, respectively; diag(B) returns the

main diagonal of the matrix B; Nðu; �2Þ is the normal

distribution with mean u and variance �2.

4.2.2. DPFTA-II

To reduce the communication load and the computa-

tion load, we propose DPFTA-II, which is similar to

DPFTA-I. An adaptive sensor selection step is added

except for the first sample time of each active cluster.

At time k (k 6¼ 1), the CH node calculates the pre-

dicted position of the target, and selects a sensor node

which is the nearest to the predicted position by

sending a report command. Only the selected sensor

node reports measurement to the CH node at this

sample time. Obviously, the performance of DPFTA-

II depends on the accuracy of the predicted position

and the measurement noise level of the selected sensor

node. We propose to set a minimum acceptable

detection threshold Dm (Dm > Dt). If the measure-

ment of the selected sensor node is not beyond Dm at

time k, the selection step is stopped provisionally at

time k þ 1. The pseudo-code of DPFTA-II is shown in

Table III—Algorithm 3, where flag indicates if the

selection step will be stopped at next sample time.

5. Performance Evaluation System

The performance of tracking algorithm for USNs

should be measured from multiple aspects such as

tracking performance, communication cost, energy

cost, tracking response time. An ideal tracking algo-

rithm for USNs has high tracking performance, low

communication cost, low energy cost, and short track-

ing response time. To improve the tracking perfor-

mance, more measurements from sensor nodes should

be fused, and this leads to higher communication cost

and energy cost. Therefore, the tracking performance

conflicts with the communication cost and the energy

cost. The tracking response time, which decides

whether the target information can be obtained in

time, is concerned closely with the characteristics of

underwater acoustic communication.

Table II. Algorithm2: DPFTA-I.

1. The initial CH node CHa does the following:
1.1. For i ¼ 1; � � � ;NS Draw xi0 � pðx0Þ
1.2. For k ¼ 1; � � � ;Ka

1.2.1. For i ¼ 1; � � � ;NS Draw xik � pðxkjxik�1Þ
1.2.2. If get measurements
– For i ¼ 1; � � � ;NS

� Calculate !i
k ¼ pðz1ðkÞ; � � � ; zNðkÞðkÞjxikÞ� Normalize !i
k ¼ !i

k

�PNS

i¼1 !
i
k

– Resample using 2.2 of Algorithm 1
1.2.3. Estimate the state and covariance:

x̂k ¼
PNS

i¼1 !
i
kx

i
k, Ck ¼

PNS

i¼1 !
i
kðxik � x̂kÞðxik � x̂kÞT

1.3. Forward x̂Ka
and diagðCKa

Þ to the next CH node CHb
2. The CH node CHb does the following:
2.1. For i ¼ 1; � � � ;NS Draw xi0 � Nðx̂Ka

; diagðCKa
ÞÞ

2.2. For k ¼ 1; � � � ;Kb Run as 1.2
2.3. Forward x̂Kb

and diagðCKb
Þ to the next CH node CHc

3. The CH node CHc repeats the steps done by the previous CH node

Table III. Algorithm3: DPFTA-II.

1. The initial CH node CHa does the following:
1.1. For i ¼ 1; � � � ;NS Draw xi0 � pðx0Þ
1.2. k ¼ 1, flag ¼ 0
1.2.1. For i ¼ 1; � � � ;NS Draw xik � pðxkjxik�1Þ
1.2.2. If get measurements

– For i ¼ 1; � � � ;NS

� Calculate !i
k ¼ pðz1ðkÞ; � � � ; zNðkÞðkÞjxikÞ� Normalize !i
k ¼ !i

k

�PNS

i¼1 !
i
k

– Resample using 2.2 of Algorithm 1
1.2.3. Estimate the state and covariance:

x̂k ¼
PNS

i¼1 !
i
kx

i
k , Ck ¼

PNS

i¼1 !
i
kðxik � x̂kÞðxik � x̂kÞT

1.3. For k ¼ 2; � � � ;Ka

1.3.1. For i ¼ 1; � � � ;NS Draw xik � pðxkjxik�1Þ
1.3.2. If flag ¼ 0

– Calculate the predicted position of target xP ¼ PNS

i¼1 !
i
kx

i
k

– Select a sensor node nearest the predicted position
– Send a report command and get the measurement zS
– If zS < Dm, flag ¼ 1
– For i ¼ 1; � � � ;NS

� Calculate !i
k ¼ pðzsjxikÞ� Normalize !i
k ¼ !i

k

�PNS

i¼1 !
i
k

– Resample using 2.2 of Algorithm 1
1.3.3. Else

– flag ¼ 0
– Run as 1.2.2

1.3.4. Run as 1.2.3
1.4. Forward x̂Ka

and diagðCKa
Þ to the next CH node CHb

2. The CH node CHb does the following:
2.1. For i ¼ 1; � � � ;NS Draw xi0 � Nðx̂Ka

; diagðCKa
ÞÞ

2.2. k ¼ 1 Run as 1.2
2.3. For k ¼ 2; � � � ;Kb Run as 1.3
2.4. Forward x̂Kb

and diagðCKb
Þ to the next CH node CHc

3. The CH node CHc repeats the steps done by the previous CH node
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The design of tracking algorithm for USNs requests

for a kind of integrated evaluation system. We choose

to use four metrics: tracking performance, commu-

nication cost, energy cost, and tracking response time.

The formalized description of each performance me-

tric is proposed in this section.

5.1. Tracking Performance

To indicate the accuracy of tracking algorithms, we

adopt root mean square error (RMSE), defined as

follows, to measure the tracking performance:

EPðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
i¼1

ðxk;i � x̂k;iÞ2 þ ðyk;i � ŷk;iÞ2
h i

M

vuut ð7Þ

where M is the number of Monte Carlo simulations;

ðxk;i; yk;iÞ and ðx̂k;i; ŷk;iÞ are the true and the estimated

two-dimensional positions of the target at time k,

respectively, in the simulation run i.

5.2. Communication Cost

Communication traffic, which is the total amount of

data transmission, is used to evaluate the communica-

tion cost. Under DPFTA-I, measurements beyond Dt

need to be transmitted. Under DPFTA-II, a report

command and a selected measurement need to be

transmitted except for that at the first sample time of

each active cluster as well as the sample time when the

selection step is stopped. Both tracking algorithms

need to forward the estimation results when the active

cluster is changing. Let sm, se and sc be the sizes (in

terms of number of bits) of data packets of the measure-

ment, the estimation results, and the report command,

respectively. Obviously, we have se > sm > sc.

For the sake of simplicity, we assume that commu-

nication is reliable. If communication links are un-

reliable, the total amount of data transmission is

related to the communication protocol and will be

larger. The communication protocol is beyond the

scope of our research. We compare the lower limits of

the communication traffics of two tracking algorithms.

Let the communication traffics required for two

tracking algorithms be CTI and CTII, respectively, as

follows:

CTI ¼
XNTS

k¼1

CTIðkÞ ¼
XNTS

k¼1

ðsmNIðkÞ þ seeðkÞÞ ð8Þ

CTII ¼
XNTS

k¼1

CTIIðkÞ ¼
XNTS

k¼1

ðsmNIIðkÞ þ scrðkÞ þ seeðkÞÞ

ð9Þ

where CTIðkÞ and CTIIðkÞ are, respectively, the com-

munication traffics required for two tracking algo-

rithms at time k; NTS is the number of time steps;

NIðkÞ and NIIðkÞ are the numbers of measurements in

two tracking algorithms, respectively; NIðkÞ is the

number of measurements beyond Dt; rðkÞ shows

whether a report command has been sent (if yes, it

returns 1; other return zero); and eðkÞ indicates if the
CH node has forwarded the estimation results.

At the first sample time of each active cluster as

well as the sample time when the selection step is

stopped, let rðkÞ ¼ 0 and NIIðkÞ ¼ NIðkÞ so that we

have CTIðkÞ ¼ CTIIðkÞ. Otherwise, we have rðkÞ ¼ 1

and NIIðkÞ ¼ 1. If smNIðkÞ > sm þ sc holds, namely

NIðkÞ � 2, we have CTIðkÞ > CTIIðkÞ. When the

active cluster is changing, let eðkÞ ¼ 1, otherwise let

eðkÞ ¼ 0.

The average communication cost required for the

algorithm i of M simulation runs is

CTi ¼
XM
j¼1

CTi;j

M
ð10Þ

where CTi;j is the communication traffic required for

the algorithm i in the simulation run j.

5.3. Energy Cost

Sensor nodes are normally composed of four basic

units: a sensing unit, a processing unit, a communica-

tion unit, and a power unit. Among these units,

communication and sensing consume most of the

energy. Furthermore, the energy consumed in sensing

is the same for both tracking algorithms. We choose to

neglect the energy consumed in computing and sen-

sing, so that the energy cost depends on energy

consumed in data transmission.

To quantify the energy cost in data transmission, we

adopt the energy dissipation model based on the

underwater acoustic communication principle in Re-

ference [14]. To transmit a b-bit packet from one node

to another over a distance d, the energy consumption

of the transmitter is

ETðb; dÞ ¼ bP0AðdÞ ð11Þ
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and to receive this packet, the energy consumption of

the receiver is:

ERðbÞ ¼ bPr ð12Þ

where P0 is a power level needed at the input to the

receiver; Pr is a constant parameter depends on the

receiver devices; AðdÞ is the attenuation, which is

given as:

AðdÞ ¼ dmad ð13Þ

where m is the energy spreading factor (1 for cylind-

rical, 1.5 for practical, and 2 for spherical) and

a ¼ 10�ðf Þ=10 is a frequency-dependent term obtained

from the absorption coefficient �ðf Þ in dB/km for f in

kHz, where, we have

�ðf Þ ¼ 0:11f 2

ð1þ f 2Þ þ
44f 2

ð4100þ f 2Þ þ 2:75

� 10�4f 2 þ 0:003

ð14Þ

Let the energy costs required for two tracking

algorithms be ECI and ECII, respectively, as follows:

ECI ¼
XNTS

k¼1

ECIðkÞ ¼
XNTS

k¼1

(
sm

"
P0

XNIðkÞ

i¼1

AðdiÞ

þ PrNIðkÞ
#
þ seeðkÞ P0AðdCHÞ þ Pr½ �

) ð15Þ

ECII ¼
XNTS

k¼1

ECIIðkÞ ¼
XNTS

k¼1

(
sm

"
P0

XNIIðkÞ

i¼1

AðdiÞ

þ PrNIIðkÞ
#
þ scrðkÞ½P0AðdsÞ þ Pr�

þ seeðkÞ½P0AðdCHÞ þ Pr�
)

ð16Þ

where ECIðkÞ and ECIIðkÞ are the energy costs re-

quired for two tracking algorithms at time k, respec-

tively; di the distance between the CH node and the

sensor node i, which reports measurement to the CH

node; dCH the distance between two CH nodes; and ds
is the distance between the CH node and the selected

sensor node.

The average energy cost required for the algorithm i

of M simulation runs is

ECi ¼
XM
j¼1

ECi;j

M
ð17Þ

where ECi;j is the energy cost required for the algo-

rithm i in the simulation run j.

5.4. Tracking Response Time

The tracking response time, including data transmis-

sion time and computation time, indicates how long a

USN can obtain the target information such as posi-

tion, velocity. It is assumed that two tracking algo-

rithms use the same computation time. The tracking

response time at time k is determined by the data

transmission time, including the delay in waiting for

being transmitted, the delay in sending or receiving

the entire length of the packet over the channel, the

propagation delay, etc.

Limited bandwidth capacity and large propagation

delay are the unique characteristics of underwater

acoustic communication. Since the sizes of data

packets are small in both tracking algorithms, the

propagation delay is used to measure the tracking

response time. At time k, the tracking response

times of DPFTA-I and DPFTA-II are expressed as

follows:

TRTIðkÞ ¼
XNIðkÞ

i¼1

di

ve
þ eðkÞdCH

ve
ð18Þ

TRTIIðkÞ ¼
XNIIðkÞ

i¼1

di

ve
þ rðkÞds

ve
þ eðkÞdCH

ve
ð19Þ

where ve is the underwater acoustic propagation speed

in m/s, which can be modeled as follows:

ve ¼ 1410þ 4:21t � 0:037t2 þ 1:1sa

þ 0:018de
ð20Þ

where t is the temperature of the water in degrees

Celsius; sa the salinity of the water; and de is the

depth in meters.
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6. Simulations

In this section, we present simulations for two track-

ing algorithms using MATLAB to study the trade-off

between performance and cost. Two tracking algo-

rithms are also compared with each other as well as

with another tracking algorithm based on EKF, de-

noted as DEKFTA. DEKFTA is similar to DPFTA-I

except running local EKF, which has been used in the

context of DADS [5]. Furthermore, the two proposed

tracking algorithms are studied in terms of detection

threshold and sensor density.

6.1. Simulation Setup

Figure 3 shows the platform of the simulation scene.

Sensor nodes are deployed over a region of size

2� 2 km2, with a mean sensor density of � ¼ 5 per

km2. The whole region is divided into four clusters.

CH1ð0:5; 0:5Þ, CH2ð1:5; 0:5Þ, CH3ð0:5; 1:5Þ, and

CH4ð1:5; 1:5Þ are the CH nodes. SSð1; 1Þ is the sur-

face station. h ¼ 0:1 km is the vertical distance

between the ocean floor and the plane within which

the target moves.

The actual initial state of the target is

X0 ¼ ½2;�0:06; 0:5; 0:06�T. The system noise is a

zero mean Gaussian white noise process with covar-

iance matrix Q ¼ diagð½0:0002; 0:0002�Þ. The initial

state vector is assumed to have a Gaussian distribution

with known mean X0 ¼ ½2:004;�0:062; 0:505; 0:058�T,
and covariance matrixM0 ¼ diagð½0:004; 0:002; 0:005;
0:002�Þ. S is set to 5� 105. T ¼ 1 s is the sampling

time. The measurement noise is a zero mean Gaussian

white noise process with variance R ¼ 0:52. Dt is set

to 2 and Dm is set to 10. The sizes of data packets are

sm ¼ 32 bits, se ¼ 96 bits, and sc ¼ 8 bits. For the

sake of simplicity, let P0 ¼ Pr ¼ 1mJ/bit, m ¼ 1:5,
and f ¼ 15 kHz. Let sa ¼ 34:5, de ¼ 250m, and

t ¼ 10�C, so that we have ve ¼ 1490m=s. The num-

ber of particles which are used for both tracking

algorithms is NS ¼ 2000.

We repeated 100 simulation runs of two tracking

algorithms. In each run, we use the same target

trajectory, but with different sequences of system

noise and measurement noise. However, the mean

and variance of system noise and measurement noise

are the same.

6.2. Simulation Results

Tracking results of a simulation run are shown in

Figure 4; and RMSE of 100 runs are shown in

Figure 5, where divergent filtering has been excluded.

Divergent condition is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxk � x̂kÞ2 þ ðyk � ŷkÞ2

q
> 0:15 km ð21Þ

where ðxk; ykÞ and ðx̂k; ŷkÞ are the true (actual) and the
estimated two-dimensional positions of the target,

respectively, at time k. The number of divergent

filtering for DEKFTA is 10, but DPFTA-I and

DPFTA-II have no problem of filtering divergence.

Although DEKFTA utilizes the same measurements

as DPFTA-I, EKF has flaws when it is applied to

nonlinear systems.

Illustrated from Figures 4 and 5, DPFTA-I achieves

higher tracking accuracy than DPFTA-II. Because

DPFTA-I utilizes more measurements and meanwhile

DPFTA-II makes use of measurement from only one

Fig. 3. Platform of simulation scene. Fig. 4. Tracking results of a run.
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sensor node at most sample times. However, the

average communication cost of DPFTA-I reaches

3197 bits when DPFTA-II reaches 1592 bits, only

50 per cent of DPFTA-I. The average energy cost of

DPFTA-I reaches 8474mJ when DPFTA-II reaches

3377mJ, only 40 per cent of DPFTA-I. Furthermore,

compared with DPFTA-II, the tracking response time

of DPFTA-I at most of the sample times is longer, as

shown in Figure 6. In this case, the USN is not able to

take timely action, such as directing a tracker to

intercept the target rapidly. In summary, DPFTA-II

achieves dramatic reduction of communication cost,

energy cost, and tracking response time at only small

cost of tracking performance.

6.3. Simulation Analysis

In order to understand the performance of two track-

ing algorithms more comprehensively, we measure

how the mean (Me), variance (Va) of RMSE, average

communication cost (CT), and average energy cost

(EC) vary with detection threshold Dt and sensor

density � through simulations, as listed in Table IV.

Table IV shows that as Dt increases, tracking

performance expressed as the RMSE augments and

tracking cost expressed as the average communication

cost and energy cost decreases. Setting Dt according

to specific application requirements can result in

different trade-offs between tracking performance

and tracking cost. Furthermore, as � increases, the

tracking performance is improved and the tracking

cost increases. However, there is a maximum �
beyond which using more sensors gains very little in

the tracking performance. It is obvious that with the

increment of �, the tracking performance of DPFTA-II

is greatly improved with almost the same tracking

cost. In conclusion, when � is low, DPFTA-I is the

better choice, otherwise DPFTA-II is a good substitute

which can significantly reduce tracking cost at only a

slight expense of tracking performance.

7. Conclusions

Target tracking is a representative application for

USNs. We propose two tracking algorithms based

on a distributed particle filter for two-dimensional

Table IV. Comparison under different Dt and �.

� ¼ 5, Dt ¼ 2 � ¼ 5, Dt ¼ 4 � ¼ 8, Dt ¼ 2

DPFTA-I DPFTA-II DPFTA-I DPFTA-II DPFTA-I DPFTA-II

Me 0.0157 0.0327 0.0237 0.0336 0.0101 0.0209
Va 0.0090 0.0128 0.0148 0.0138 0.0054 0.0102
CT 3197 1592 2054 1347 3990 1613
EC 8474 3377 5029 2573 11882 3374

Fig. 5. RMSE of 100 runs.

Fig. 6. Tracking response time of a run.
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USNs, denoted by DPFTA-I and DPFTA-II. For the

design of tracking algorithms for USNs, a perfor-

mance evaluation system is established. Simulations

are conducted to quantitatively compare the proposed

algorithms as well as another tracking algorithm

based on EKF. The simulation results show that

DPFTA-I is the better choice when sensor density is

low; otherwise DPFTA-II is a good substitute which

can significantly reduce communication cost, energy

cost, and tracking response time at only a slight

expense of tracking performance. Furthermore, set-

ting detection threshold according to specific applica-

tion requirements can result in different trade-offs

between tracking performance and tracking cost.

In the next phase of our research, we will extend the

tracking algorithms to track multiple targets and to

be robust against transmission failures and out-of-

sequence measurements.
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