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Abstract In this paper, we study the problem of modeling and controlling leader-follower formation of mobile robots. First, a
novel kinematics model for leader-follower robot formation is formulated based on the relative motion states between the robots
and the local motion of the follower robot. Using this model, the relative centripetal and Coriolis accelerations between robots are
computed directly by measuring the relative and local motion sensors, and utilized to linearize the nonlinear system equations. A
formation controller, consisting of a feedback linearization part and a sliding mode compensator, is designed to stabilize the overall
system including the internal dynamics. The control gains are determined by solving a robustness inequality and assumed to satisfy
a cooperative protocol that guarantees the stability of the zero dynamics of the formation system. The proposed controller generates
the commanded acceleration for the follower robot and makes the formation control system robust to the effect of unmeasured
acceleration of the leader robot. Furthermore, a robust adaptive controller is developed to deal with parametric uncertainty in the
system. Simulation and experimental results have demonstrated the effectiveness of the proposed control method.
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1 Introduction

Over the last decade or so, various control techniques
have been applied to the formation control design of mobile
robots, such as the leader-follower approach[1∼4], virtual
leader approach[5, 6], behavior-based approach[7∼10], and
bio-inspiration approach[11∼14]. The leader-follower forma-
tion control of mobile robots, one of the main approaches
in this field, has been studied by many researchers. In a
robot formation with leader-follower configuration, one or
more robots are selected as leaders, and these are respon-
sible for guiding the formation, and the rest of robots are
controlled to follow the leaders and named follower robots.
The control objective is to make the follower robots track
the leaders with some prescribed offsets.

Desai et al.[1∼3] presented a feedback linearization con-
trol method for the formation of nonholonomic mobile
robots using the leader-follower approach. In [1∼3], the
absolute velocity of the leader robot in the local coordi-
nates of the follower robot is treated as a necessary exoge-
nous input for the formation tracking controller. However,
the absolute velocities of the leader cannot be measured di-
rectly by a local sensor carried by the follower robot. Vidal
et al.[4, 15]proposed a formation control approach for non-
holonomic mobile robots using motion segmentation and
visual servoing techniques. In [4, 15], the problem of dis-
tributed formation control in the configuration space was
translated into separate visual servoing tasks in the im-
age plane of a central-panoramic camera. The motion of
the leader robot needed by the tracking controller was esti-
mated by the follower robot through comparing the optical
flows of two pixels, are corresponding to a point on the
leader and the other to a static point in the environment.

Chiem and Cervera[16] presented a vision-based robot
formation approach using the properties of Bézier curves.
The global linear velocity of the leader robot was assumed
to be constant and known to the follower robot, and only
the angular velocity of the follower robot needs to be com-
puted using the curvature of Bézier curves between the two
robots. In [17], a dual-mode model predictive controller
was proposed for the leader-follower robot formation. The
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formation controller was designed based on the kinemat-
ics model and the feedback linearization controller given in
[1∼3]. In [18], a sliding mode controller was designed for
the leader-follower robot formation based on the kinematics
model given in [2]. The formation control law in this paper
requires the absolute velocity and the absolute acceleration
of the leader robot, and as it is well konwn, in practive, it
is difficult to measure or estimate in practice the absolute
acceleration of the leader robot.

Very recently, in [19], a leader-follower formation con-
troller was proposed utilizing only the relative positions
between robots, in which the derivatives of the relative po-
sitions were estimated using a high-gain observer. A high-
gain discontinuous auxiliary control term was added to the
control law to stabilize the resulting second order error dy-
namics in a globally uniformly ultimately bounded manner.
The control gains of the discontinuous term were deter-
mined by the magnitude of the absolute acceleration of the
leader robot and its derivative.

In leader-follower formation control, the most widely
used control technique is feedback linearization based on
the kinematics model of the system. In this study, we focus
on the problem of leader-follower robot formation control
with relative motion sensors and develop a control method
that does not require a global positioning system or abso-
lute motion sensors.

The first part of this paper presents a second order kine-
matics model for leader-follower robot formation, which is
derived in terms of the relative motion states between the
robots and the local motion of the follower robot. The for-
mulation of the proposed model is inspired by the first order
kinematics model presented in [1∼3], where the model is
described in terms of absolute motion states of the robots.
Based on the proposed kinematics model, feedback lin-
earization is implemented to achieve the objective of forma-
tion control with relative motion states. However, there is a
difficulty in the implementation of feedback linearization.
The difficulty is related to the existence of unstable zero
dynamics[20]. In practice, the feedback linearization can-
not be used if the zero dynamics is unstable. In this study,
a stability condition for the zero dynamics of leader-follower
robot formation system is derived through constraining the
motion of the leader robot and the formation configuration.
The stability condition can also be treated as the coopera-
tive protocol of formation control between robots.

As discussed later in the paper, the internal dynamics of
leader-follower robot formation system is only locally sta-
ble. When the internal state is in an unstable region, the
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formation system suffers an increasing perturbation from
internal dynamics. To suppress such a perturbation, a ro-
bustness inequality is introduced to design the feedback
gain. Under the proposed control scheme, the formation
tracking error approaches zero even when the internal state
is in an unstable region. On the other hand, the conver-
gence of tracking error also forces the internal state to enter
the stable region of the internal dynamics. Furthermore, a
sliding mode controller is integrated to the feedback lin-
earization controller to compensate for the uncertainty as-
sociated with the unknown absolute acceleration of leader
robot. The Lyapunov method is used to stabilize the over-
all system.

In the proposed approach, the commanded acceleration
for the follower robot is determined by the control law.
However, it is normally not practical for a mobile robot to
track an acceleration signal. Instead, in implementation,
the acceleration inputs that are determined by the control
law are translated into velocity variations by multiplying
them with the control period. Hence, the reference veloc-
ities for the follower robot, as commonly used in current
control methods, can be obtained by adding the velocity
variation to the current velocity.

As a further improvement of the proposed robust for-
mation controller, a robust adaptive control scheme is also
developed based on the work in [21, 22]. The controller con-
sists of an adaptive control part that serves to deal with
parametric uncertainty and a robust control part to com-
pensate for the uncertainty associated with the absolute
acceleration of the leader robot.

This paper is organized as follows. In Section 2, the
proposed formation kinematics model is derived. The pro-
posed control schemes and robust adaptive control scheme
for leader-follower robot formation system are presented
in Sections 3 and 4, respectively. Simulations and experi-
mental results are used to illustrate the effectiveness of the
proposed control methods in Section 5 and 6, respectively.
Finally, conclusions are drawn in Section 7.

2 Formation model formulation

In this section, we formulate the kinematics model of the
leader and follower robots in formation. The goal of the
formation control is to make the follower robot track the
leader robot with desired relative distance and bearing be-
tween the robots. As indicated in Fig. 1, the follower robot
R2 follows the leader robot R1 with a relative distance l12
and a relative bearing ϕ12 between the two robots, and a
relative motion sensor is mounted at point C on the follower
robot R2.

The kinematics equations of the robots are given by the
following equations(

ẋci

ẏci

)
=

(
cos θi −d sin θi

sin θi d cos θi

) (
vi

ωi

)
(1)

θ̇i = ωi

where (xci yci) are the coordinates of the center of mass
Pc in the world coordinates system, and θi is the heading
angle of the robot. As shown in the Fig. 1, −→vi and −→ω i are
the linear and angular velocities of the robot Ri, and their
scalar representation are given by vi and ωi, for i = 1, 2,
respectively. Po is the intersection of the axis of symmetry
with the driving wheel axis; d is the distance from the center
of mass to point Po; h is the distance from the reference
point C to point Po. The velocity of point C in the local
coordinates of robot R2 is given by V2 = [v2 hω2]

T. Set
θ12 = θ1 − θ2. Then, θ12 is the relative orientation between

R1 and R2, and θv2 = π − ϕ12 − θ12 is the relative bearing
between velocity v2 and line l12.

Fig. 1 Two robots using leader-follower controller

2.1 Model formulation of the leader-follower
robots system

Similar to [1∼3], the kinematics of the leader and fol-
lower robots in formation can be described by

M(l12, θv2)

(
l̇12
ϕ̇12

)
− N(l12, θ12, θv2)

(
v1

ω1

)
=

(
v2

ω2

)

(2)

where the matrices M and N are defined as

M =

( − cos θv2 −l12 sin θv2

(sin θv2)/h −(l12 cos θv2)/h

)

N =

( − cos θ12 l12 sin θv2

−(sin θ12)/h (l12 cos θv2)/h

)
In (2), the formation motion states have been projected

to the local frame of the follower robot R2. By solving (2),
the absolute velocity of the leader robot can be presented
by the formation motion states and the absolute velocity
of the follower robot

N−1

[
M

(
l̇12
ϕ̇12

)
−

(
v2

ω2

) ]
=

(
v1

ω1

)
(3)

Differentiating (2) and incorporating (3) yields(
v̇2

ω̇2

)
= M

(
l̈12
ϕ̈12

)
+ C

(
l̇12
ϕ̇12

)
− θ̇12

(
hω2

−v2/h

)
+

M

( −l12ϕ̇12

l̇12/l12

)
ω2 +

(
δ1

δ2

)
(4)

where the matrix C and the vector δδδ are defined as

C =

(
θ̇v2 sin θv2 −θ̇v2 l12 cos θv2 − l̇12 sin θv2

(θ̇v2 cos θv2)/h (θ̇v2 l12 sin θv2 − l̇12 cos θv2)/h

)

δδδ =

(
δ1

δ2

)
= M

( −v̇1 cos ϕ12

(v̇1 sin ϕ12)/l12 − ω̇1

)

where θ̇12 = ω1 − ω2 and θ̇v2 = −ϕ̇12 − θ̇12 have been used
in (4).
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Denoting the state variables by qqq = (l12 ϕ12)
T and q̇qq =

(l̇12 ϕ̇12)
T
, and the input of the robot formation system

by uuu = (v̇2 ω̇2)
T, we can rewrite model (4) in the following

form

uuu = M(qqq, θ12)q̈qq + C(qqq, q̇qq, θ12, θ̇12)q̇qq +

G(qqq, q̇qq, θ12, θ̇12, v2, ω2) + δδδ(v̇1, ω̇1, qqq, q̇qq) (5)

where the function G(qqq, q̇qq, θ12, θ̇12, v2, ω2) is defined as

G = −θ̇12

(
hω2

−v2/h

)
+ M

( −l12ϕ̇12

l̇12/l12

)
ω2 (6)

(5) represents the input–output relation for the leader-
follower robot formation system, where the outputs are the
relative distance and the relative bearing and the relative
velocities between robots. The inputs of the system are the
absolute accelerations of the follower robot in local coordi-
nates. The relative motion states qqq and q̇qq and θ̇12 in (5)
can be measured by the relative motion sensors fixed on
the follower robot.

The second order kinematics model (5) forms a nonlin-
ear and multivariable system, which allows us to do more
rigorous analysis of the performance of control system, and
to design robust nonlinear control laws that guarantees the
global stability and tracking of more complex trajectories
than those for the one order kinematics model.

Remark 1. Using model (5), the relative centripetal
and Coriolis accelerations given by Cq̇qq + G in (5) can be
computed directly in the light of outputs of the relative
motion sensors and the local motion sensor fixed on the fol-
lower robot. Furthermore, these relative accelerations can
be utilized to linearize the nonlinear leader-follower forma-
tion system, as discussed later.

Remark 2. The last term δδδ in model (5) represents the
effect of the absolute acceleration of leader robot, which
is difficult to accurately measure or estimate due to the
limitation of the motion sensors and treated as model un-
certainty of the system.

2.2 Formulation of internal dynamics

Using (3), the internal dynamics[20] of the leader-follower
robot formation system is given by

θ̇12 = ω1 − ω2

= −v1

h
[sin θ12 − (l̇12 sin θv2 − ϕ̇12l12 cos θv2)] +

ω1(1 +
l12
h

cos θv2)

= −Aθ sin (θ12 − α0) + ω1 − 1

h
(l̇12 sin θv2 −

ϕ̇12l12 cos θv2) (7)

where the amplitude Aθ and the phase α0 are defined

as Aθ =
√

(kA)2 + (kB)2 and α0 = arctan (kB/kA) for

kA = (v1 − ω1l12 sin ϕ12)/h and kB = ω1l12 cos ϕ12/h, re-
spectively.

Let qqqd = (ld12 ϕd
12)

T
and q̇qqd = (l̇d12 ϕ̇d

12)
T

be the de-
sired relative formation motion states between two robots.
Then, the formation tracking errors are represented by

q̃qq = (l12 − ld12 ϕ12 − ϕd
12)

T
, ˙̃qqq = (l̇12 − l̇d12 ϕ̇12 − ϕ̇d

12)
T

The zero dynamics of the leader-follower robots system can
be obtained by constraining all the tracking errors to zero
and assuming l̇d12 and ϕ̇d

12 to be zero. Physically, this means

that the robots in formation are both keeping desired rela-
tive positions and moving at a constant linear velocity and
angular velocity in the plane.

The zero dynamics[20] is given by

θ̇12 = −Aθ0 sin (θ12 − α0) + ω1 (8)

To make system (8) to have a stable equilibrium in the
region |θ12 − α0| ≤ π/2, the following condition should be
satisfied

Aθ0 > ω1 (9)

for any ω1 and v1. If ω1 = 0, the stable equilibrium of
system (8) is located at the origin. If condition (9) is not

satisfied, the sign of θ̇12 will remain positive or negative
when the robots are in the desired formation configuration.
In this case, the value of θ12 will increase or decrease con-
tinuously all the time, which means that the zero dynamics
is unstable.

Condition (9) ensures the stability of the zero dynamics
by limiting the range of the leader ′s motion and the class of
the desired formation configuration. Once condition (9) is
satisfied, the relative angular velocity will converge to zero
when the tracking errors converge to zero. In the case where
condition (9) is not established, the solutions of (7) imply
a continuous relative rotation motion between robots, and
the relative angular velocity of the motion is periodically
varying.

Assumption 1. For the velocity (v1 ω1)
T of the leader

robot, the following condition holds

Aθ0 > ω1

in the region
∥∥(q̃qq ˙̃qqq)

T∥∥ ≤ Q, where Q is strictly positive.
Assumption 1 can be viewed as a cooperation protocol

between the leader and the follower robot, which provides
a stability margin for the zero dynamics.

2.3 Reformulation of internal dynamics

Under Assumption 1, the internal dynamics is reformu-
lated in terms of tracking errors in this section. Through
reformulation, we derive a bound for the time derivative of
the square of the internal tracking error. This result will
be used to prove the stability of the closed-loop system in
the following section.

When the formation system is in steady state, the inter-
nal dynamics is given by

β̇0 = −Aθ sin β0 + ω1 − 1

h
(l̇d12 sin θv2 − ϕ̇d

12l
d
12 cos θv2) (10)

where β0 is the solution of the stable internal dynamics.
Make the following state transformation

θ̃12 = θ12 − α0 − β0

and set the function

Γ(θ̃12, ˙̃qqq) =
1

h

[ − sin θv2 l12 cos θv2

]
˙̃qqq (11)

Subtract (7) from (10). Then the internal dynamics of sys-
tem (2) can be rewritten as

˙̃
θ12 = −Aθ

[
sin (θ̃ + β0) − sin β0

]
+ Γ(θ̃12, ˙̃qqq) (12)

Lemma 1. If the states l12 and θ̃12 are bounded by∥∥l12
∥∥ ≤ L and

∥∥θ̃12

∥∥ ≤ Θ , where L and Θ are positive
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constants, the internal state in (12) satisfies the following
inequality

θ̃12
˙̃
θ12 ≤ −ρθ

∥∥θ̃12

∥∥2
+ ρ1

∥∥ ˙̃qqq1

∥∥∥∥θ̃12

∥∥ + ρ2

∥∥ ˙̃qqq2

∥∥∥∥θ̃12

∥∥ (13)

where ρθ = 2Aθ/3 min{cos (β0 + 0.5θ̃12)} for |β0+0.5θ̃12| <
0.5π, ρ1 = 1/h, and ρ2 = L/h.

Proof. Lemma 1 can be directly proved as follows. In-
ternal dynamics (12) can be rewritten as

˙̃
θ12 = − Aθ

[
sin (θ̃12 + β0) − sin β0

]
+ Γ(θ̃12, ˙̃qqq) =

2Aθ cos (β0 +
θ̃12

2
) sin

θ̃12

2
+ Γ(θ̃12, ˙̃q) (14)

Multiplying (14) by θ̃12, we get

θ̃12
˙̃
θ12 = −2Aθ cos (β0 +

θ̃12

2
)θ̃12 sin

θ̃12

2
+ θ̃12Γ(θ̃12, ˙̃q) (15)

where θ̃12 sin (0.5θ̃12) ≥ 0 and
∣∣ sin 0.5θ̃12

∣∣ ≥ ∣∣θ̃12

∣∣/3 for∣∣θ̃12

∣∣ ≤ 0.5π, and

θ̃12Γ(θ̃12, ˙̃qqq) =
1

h
θ̃12

[ − sin θv2 , l12 cos θv2

]
˙̃qqq

≤ 1

h

∥∥θ̃12

∥∥∥∥ ˙̃qqq1

∥∥ +
L

h

∥∥θ̃12

∥∥∥∥ ˙̃qqq2

∥∥
Then, the following inequality holds

θ̃12
˙̃
θ12 < −ρθ

∥∥θ̃12

∥∥2
+

1

h

∥∥θ̃12

∥∥∥∥ ˙̃qqq1

∥∥ +
L

h

∥∥θ̃12

∥∥∥∥ ˙̃qqq2

∥∥ (16)

for ρθ = 2Aθ/3 min{cos (β0 + 0.5θ̃12)} and
∣∣θ̃12

∣∣ ≤ 0.5π.
Thus, Lemma 1 is proved. �

Lemma 1 shows that the internal dynamics becomes sta-
ble when the perturbation Γ(θ̃12, ˙̃qqq) vanishes at the origin.
The stability can also be seen from (14). If the tracking

error (q̃qq ˙̃qqq)T converges so that the following inequality is
satisfied, ∣∣∣∣2Aθ cos (β0 +

θ̃12

2
)

∣∣∣∣ ≥ ∣∣∣Γ(θ̃12, ˙̃qqq)
∣∣∣ (17)

then the internal tracking error θ̃12 approaches zero. An
effective method to stabilize internal dynamics (14) is to

force the tracking error (q̃qq ˙̃qqq)T approach origin sufficiently
fast to satisfy (17) for system (5), which will be discussed
in the following section.

3 Robust formation control

In this section, a robust controller is designed to stabi-
lize the system in the presence of modeling uncertainty.
The objective is to develop a control law to determine
uuu = (v̇2 ω̇2)

T for the leader-follower formation system
such that the follower robot tracks the leader robot with a
given formation configuration qqqd = (ld12 ϕd

12)
T
.

The proposed control scheme consists of a nominal part
designed based on the nominal model of the system with-
out the perturbation of modeling uncertainty and a sliding
mode robust compensator to stabilize the overall system in
the presence of uncertainty. The overall control is defined
as

uuu = Mq̈qqr + Cq̇qq + G︸ ︷︷ ︸
u0

−Mηηη sgn(s)︸ ︷︷ ︸
u1

(18)

where u0 is the nominal control, and u1 is a sliding mode
compensator. Their design is described in the following.
The new reference acceleration vector q̈qqr is formed by shift-
ing the desired acceleration q̈qqd according to the position

error q̃qq and velocity error ˙̃qqq.

q̈qqr = q̈qqd − Λ2
˙̃qqq − Λ1q̃qq (19)

where Λi = diag (λi1 λi2) for i = 1, 2 are symmetric pos-
itive definite matrices. Thus, the reference trajectory is
expressed in terms of the tracking errors. The component
of the constant vector ηηη satisfy ηi > [|M−1δδδ|]i + η0i, where
η0i is a strictly positive constant.

The nominal control u0 in (18) leads to a linear closed-
loop equation of the nominal system

¨̃qqq = −Λ2
˙̃qqq − Λ1q̃qq (20)

and control law (18) results in the actual closed-loop system
of (5) in the form of

q̈qq = q̈qqr − ηηη sgn(s) − M−1δδδ (21)

Define the tracking errors as zzzi =
[
q̃qqi

˙̃qqqi

]T
for i = 1, 2 and

θ̃12 = (θ12 −α0)−β0 where β0 is the stable solution of zero
dynamics (8) under Assumption 1. Then, the closed-loop
equation can be written as[

ż1

ż2

]
=

[
A1 0
0 A2

] [
z1

z2

]
−

⎡
⎢⎣

0
[ηηη sgn(s) + M−1δδδ]1

0
[ηηη sgn(s) + M−1δδδ]2

⎤
⎥⎦ (22a)

˙̃
θ12 = −2kθ cos (β0 +

θ̃12

2
) sin (

θ̃12

2
) + Γ(θ̃12, ˙̃qqq) (22b)

where

Ai =

(
0 1

−λi1 −λi2

)
, i = 1, 2

Let Pi be the symmetric positive definite solution of the
following Lyapunov equation

AT
i Pi + PiAi = −Qi, i = 1, 2 (23)

where Q1 and Q2 are symmetric positive definite matrices.
Let λmin(Qi) denote the smallest eigenvalue of the matrix
Qi. The stability of the resultant closed-loop (22) can be
proved using the Lyapunov theory.

Theorem 1. If Assumption 1 holds, closed-loop system
(22) under control law (18) is asymptotically stable at the
origin with the variable si in (18) selected as

sssi = [zzzT
i Pi]2, i = 1, 2 (24)

where [zzzT
i Pi]2 denotes the second element of the vector

zzzT
i Pi, and Λ1 and Λ2 are designed such that the follow-

ing inequality holds

2λmin(Qi) ρθ − ρ2
i > 0, i = 1, 2 (25)

Proof. Consider the composite Lyapunov function can-
didate

V (t) =
1

2

2∑
i=1

zzzT
i Pizzzi +

1

2
θ̃θθ

T
θ̃θθ (26)
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Differentiating (26) with time along the solutions of (22),
substituting zzzT

i Pi with si from (24), and using inequality
(13), we have

V̇ (t) =
1

2

2∑
i=1

(żzzT
i Pizzzi + zzzT

i Piżzzi) + θ̃T ˙̃
θ =

2∑
i=1

{
− 1

2
zzzT

i Qizzzi −

zzzT
i Pi

[
0

ηi sgn(si) + (M−1δδδ)i

] }
+ θ̃T ˙̃

θ ≤

−0.5

2∑
i=1

λmin(Qi)
∥∥zzzi

∥∥2 − ρθ

∥∥θ̃12

∥∥2
+

2∑
i=1

ρi

∥∥zzzi

∥∥∥∥θ̃12

∥∥ −
2∑

i=1

η0i|si| =

−
2∑

i=1

[∥∥zzzi

∥∥ ∥∥θ̃12

∥∥] · [ 0.5λmin(Qi) −0.5ρi

−0.5ρi 0.5ρθ

]
·

[ ∥∥zzzi

∥∥∥∥θ̃12

∥∥
]
−

2∑
i=1

η0i|si| (27)

From the last equation of (27), we have V̇ (t) < 0 provided

that λmin(Qi)ρθ − ρ2
i > 0 for i = 1, 2, and (zzz1 zzz2 θ̃12) �=

0. Thus, Theorem 1 is proved. �
The stability of the closed-loop system is guaranteed

through the design of feedback gains in u0, which satisfies
robustness inequality (25) by solving Lyapunov equation
(23). In (27), the perturbation from the internal dynam-
ics is suppressed by decreasing formation tracking errors.
Thus, even the internal dynamics is not in its stable region,
the whole closed-loop system is still stable. The proper se-
lection of the control gains in u0 makes the whole system
robust to the internal perturbations.

The gain ρθ in (25) is determined by the configuration
of the formation. As it can be noted, a larger ρθ leads to
a smaller λmin(Qi) , equivalently, a lower gain of the con-
troller. Thus, robustness inequality (25) provides a trade-
off between the feedback gains and the nature of formation
commands that can be tracked. The control chattering in-
troduced by the switching term u1 can be treated using a
saturation function such as the one described in [23].

4 Robust adaptive formation control

In Section 3, we made an assumption that the parameter
h of the follower robot is exactly known. However, the
rotation center of a mobile robot in practice is not strictly
on the axis of symmetry as in theory, which is due to the
error of machining and installation of robot wheels. On
the other hand, it is difficult to measure the actual rotation
center when the mobile robot is in motion. In addition, the
calibration error of visual measurement system can also
cause uncertainty in determining the value of h. Thus,
the accurate value of h may be unavailable under certain
situations.

In this section, we take the uncertainty in h into account
and propose an adaptive control method to improve the
control performance. Inspired by [21] and [22], we rewrite
the nominal part of controller (18) in a decomposed form:
an uncertainty free part denoted by uNA and the second
part contains the parameter uncertainty and is written in
a form of vector product described by Y2×2H2×1, as shown

in the following equation.(
v̇2

ω̇2

)
= M

{ (
l̈r12
ϕ̈r

12

)
+

( −l12ϕ̇12

l̇12/l12

)
ω2

}
+

C

(
l̇12
ϕ̇12

)
− θ̇12

(
dω2

−v2/d

)
=

uuuNA + Y2×2H2×1 (28)

where

uuuNA =

[
un0

0

]
, Y =

[
−ω2θ̇12 0

0 y22

]
, HHH =

[
h

1/h

]
,

where

un0 = −(l̈r12 + ϕ̇12l12(ϕ̇12 + θ̇12 − ω2)) cos θv2 −
(ϕ̈r

12l12 + l̇12(2ϕ̇12 + θ̇12 − ω2)) sin θv2

y22 = (l̈r12 − ϕ̇12l12(ϕ̇12 + θ̇12 + ω2)) sin θv2 + v2θ̇12 −
(ϕ̈r

12l12 + l̇12(2ϕ̇12 + θ̇12 + ω2)) cos θv2

and q̈qqr = q̈qqd − Λ2
˙̃qqq − Λ1q̃qq.

The vector q̈qqr is the same as defined in (19). The vector
HHH contains the parameters to be estimated by an adaptive

estimation algorithm. In the following, the vector ĤHH will
be used to denote the estimation of HHH, and the estimation

error is presented by the vector H̃HH = HHH −ĤHH. Similarly, the
estimation error of the matrix M is given by

M̃ = M − M̂ =

(ĥ − h)

hĥ

(
0 0

sin θv2 −l12 cos θv2

)
(29)

where M̂ is the estimation of the matrix M . Clearly, if

ĥ = h, we have M̃ = 0. The uncertainty of M̃ is only
associated with the estimation error of h or, equivalently,
H.

Now, take the uncertainty of HHH into account and revise
(28) in the form of

û = M̂q̈qqr + Ĉq̇qq + Ĝ =

uuuNA + Y2×2ĤHH2×1 (30)

where the matrixes Ĉ and Ĝ denote the estimations of C
and G, respectively. (30) is the controller for nominal part
of system (2) when the system suffers from the parameter
uncertainty of h.

Based on the above discussion, a robust adaptive con-
troller for the leader-follower robots system can be designed
as

uuu = uuuNA + Y ĤHH − M̂ηηη sgn(s) (31a)

˙̂
HHH = −Γ(M̂−1Y )

T

⎡
⎣ [zzzT

1 P1]2

[zzzT
2 P2]2

⎤
⎦ (31b)

where Γ is a symmetric positive definite matrix, and a con-
stant ηi is chosen such that the following inequalities hold
true

ηi > |[M̂−1(M̃ ¨̃qqq + δδδ)]i| + η0i, i = 1, 2 (32)

where η01 and η02 are positive constants and ¨̃qqq = q̈qqr − q̈qq,
and si = [zzzT

i Pi]2 for i = 1, 2.
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Controller (31) is composed of two parts: the first part
is the output equation of the dynamical controller system,
which has the same structure as control law (18) in Section
3 and provides the control action to the follower robot;
the second part is the dynamical part, which adaptively
estimates the vector HHH needed by the first part.

The resulting closed-loop system using control law (31)
is given by[

żzz1

żzz2

]
=

[
A1 0
0 A2

] [
zzz1

zzz2

]
−

⎡
⎢⎢⎣

0

[M̂1Y H̃]1 + η1 sgn(s1) + [M̂−1(M̃ ¨̃qqq + δδδ)]1
0

[M̂1Y H̃]2 + η2 sgn(s2) + [M̂−1(M̃ ¨̃qqq + δδδ)]2

⎤
⎥⎥⎦ (33a)

˙̃
θ12 = −2kθ cos (β0 +

θ̃12

2
) sin

θ̃12

2
+ Γ(θ̃12, ˙̃qqq) (33b)

The stability of closed-loop system (33) is proved by the
Lyapunov theory in the following.

Theorem 2. If Assumption 1 holds, the closed-loop
system (33) under controller (31) is asymptotically stable
at the origin, provided that the variable si in (31a) is set
at si = [zzzT

i Pi]2 for i = 1, 2 , and Λ1 and Λ2 are chosen such
that inequality (25) holds.

Proof. Select the Lyapunov function candidate

V (t) =
1

2
(

2∑
i=1

zzzT
i Pizzzi + θ̃θθ

T
θ̃θθ + H̃HH

T
Γ−1H̃HH) (34)

Differentiating (34) with respect to time along the solutions
of system (33), we have

V̇ (t) =
1

2

2∑
i=1

(żzzT
i Pizzzi + zzzT

i Piżzzi) + θ̃θθ
T ˙̃
θθθ +

˙̃
HHHTΓ−1H̃HH =

2∑
i=1

{
− 1

2
zzzT

i Qizzzi −

zzzT
i Pi

[
0

ηi sgn(si) + [M̂−1(M̃ ¨̃qqq + δδδ)]i

] }
−

⎡
⎣ [zzzT

1 P1]2

[zzzT
2 P2]2

⎤
⎦T

M̂−1Y H̃HH + θ̃θθ
T ˙̃
θθθ +

˙̃
HHHTΓ−1H̃HH (35)

Using inequalities (13) and (25) to (35), and substituting
˙̃

HHH from (31b), we get

V̇ (t) ≤ −
2∑

i=1

0.5λmin(Qi)
∥∥zzzi

∥∥2 − ρθ

∥∥θ̃12

∥∥2
+

2∑
i=1

ρi

∥∥zzzi

∥∥∥∥θ̃12

∥∥ −
2∑

i=1

η0i|si| −

2∑
i=1

[zzzT
i Pi]2[M̂

−1Y H̃]i +
˙̃

HHHTΓ−1H̃HH =

−
2∑

i=1

[∥∥zzzi

∥∥ ∥∥θ̃12

∥∥] · [ 0.5λmin(Qi) −0.5ρi

−0.5ρi 0.5ρθ

]
·

[ ∥∥zzzi

∥∥∥∥θ̃12

∥∥
]
−

2∑
i=1

η0i|si| (36)

From (36), we have V̇ (t) < 0 provided that λmin(Qi)ρθ −
ρ2

i > 0 for i = 1, 2, and (zzz1 zzz2 θ̃12)
T �= 0. Thus, Theo-

rem 2 is proved. �
Under the adaptive control law, the effect from the un-

certainty of parameter h has been compensated. As a re-
sult, the amplitude of switching term in (31a) will increase

due to the term M̃ ¨̃qqq in (32).

5 Simulations

We will now illustrate the effectiveness of the proposed
control schemes by studying the following examples. The
formation configuration is defined as

qqqd = (ld12 ϕd
12)

T
= (400 2π/3)T

The actual value of parameter h in the simulations is set
at h = 100 mm. The trajectory of the leader robot is de-
fined by an ellipse curve in the first phase, and then the
trajectory is defined by a circle after point A, as depicted
in Fig. 2. The trajectory of the leader robot is smooth with
uniform linear and angular velocities and accelerations ex-
cept for point A.

Fig. 2 The trajectories of the two robots

The control parameters are selected as

λ11 = λ21 = 30, λ12 = λ22 = 20, η1 = 15, η2 = 0.06

By solving the Lyapunov function AT
i Pi + PiAi = −I, the

matrixes P1 and P2 are given by

P1 = P2 =

(
0.3592 −0.5

−0.5 0.7750

)

Then, the sliding variables in (18) are determined as

s1 = [zzzT
1 P1]2 = −0.5(l12 − ld12) + 0.7750 l̇12

s2 = [zzzT
2 P2]2 = −0.5(ϕ12 − ϕd

12) + 0.7750 ϕ̇12

Under controller (18), the trajectories of the two robots
are depicted in Fig. 2. In the presence of initial formation
tracking errors, the formation states are shown in Fig. 3.
Both the relative distance and the relative bearing converge
to their desired values, and the relative orientation remains
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bounded in the whole process. At point A, the motion
mode of the leader robot switches from the ellipse cure
to a circle, and at the same time, the relative orientation
increases to a new steady state to adapt to the new motion
mode of the leader robot.

The corresponding acceleration commands are shown in
Fig. 4. Both of the commanded accelerations approach zero
when the robots converge to the desired configuration. The
peaks appearing on the curves at 45th second are due to
the disturbance from the discontinuous motion of the leader
robot at point A. In implementation, the acceleration in-
puts are translated into velocity variations by multiplying
them with the control period. Hence, the reference veloc-
ities for the follower robot can be obtained by adding the
velocity variations to the current velocity.

Adaptive robust controller (31) is also tested. The con-
trol parameters are chosen as

λ11 = λ21 = 30, λ12 = λ22 = 20,

η1 = 16, η2 = 0.08

By comparative simulation tests, the gain for the adap-
tive estimator is designed as

Γ = diag (τ1 τ2) = diag (1 0.002)

It should be noted that high estimator gain will make
the estimator excessively sensitive to the system tracking
errors. For instance, high value of τ2 will introduce control
chattering into the commanded angular acceleration of the
follower robot.

The initial estimate of parameter h is set at ĥ = 150 mm,
whereas its actual value is 100 mm. To show the effective-
ness of the proposed controller under the parametric un-
certainty in h, here, we make the initial error as large as
50 %. In practice, the initial estimation error may be likely
smaller than 50 %.

Under controller (31), the trajectories of the two robots
are depicted in Fig. 5. To test the proposed approach in a
more rigorous situation, the trajectory of the leader robot
is defined by a more complex curve composed of several
ellipse and circle curves. The distance from the starting
point of the follower robot to the leader robot is also larger
than the corresponding distance in the first test.

The corresponding formation states are shown in Fig. 6.
Both the relative distance and the relative bearing converge
to their desired values, and the parametric uncertainty in
h is effectively compensated by the adaptive controller. In
contrast to Fig. 3, more severe oscillation appears in the
internal state curve, but the oscillation has little impact
on the formation tracking errors, as shown in Fig. 6. This
shows that the formation system is robust to the perturba-
tion from that the internal dynamics.

Fig. 3 The formation states

Fig. 4 The commanded linear and angular accelerations

Fig. 5 The trajectories of the two robots by using adaptive
controller (31)

Fig. 6 The system states by using adaptive controller (31)

The values of θ̇12 and θ̇v2 are shown in Fig. 7. After the
initial phase, they have the same amplitudes but with op-
posite signs, and this verifies that ϕ̇12 approaches zero on
one side since θ̇v2 = −ϕ̇12 − θ̇12. The estimation of pa-
rameter vector HHH = [h1, h2]

T is shown in Fig. 8. Although
the estimates of h1 and h2 do not converge to their actual
values, the tracking formation errors still approach zero, as
shown in Fig. 6, and an explanation for this phenomenon
can be found in [17]. The output accelerations of the con-
troller (18) are depicted in Fig. 9. When the leader robot
moves along the irregular trajectory shown in Fig. 5, the
follower robot continually regulates its commanded accel-
erations to track the leader robot with desired formation.
After the initial phase, the commanded linear acceleration
varies approximately with a fixed period to adapt to the
motion of the leader robot.
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6 Experiments

Experimental investigation has been conducted using
three nonholonomic mobile robots, as shown in Fig. 10. A
vision system transplanted from a robot-soccer platform
is used to measure the relative positions between mobile
robots. The vision system recognizes each robot by the
color marker adhibited on the top of each robot, as shown
in Fig. 10. A virtual vision sensor is fixed on each follower
robot. The virtual sensor translates the relative positions
obtained by the actual vision system into the relative mo-
tion states from the view of the follower robot.

Fig. 7 The derivatives of angular θ12 and angular θv2 by
using adaptive controller (31)

Fig. 8 The estimation of HHH by using adaptive controller (31)

Fig. 9 The commanded linear and angular accelerations

Fig. 10 Three robots formation moving

Fig. 11 (a) The trajectories of the leader robot R1 and the
follower robot R2

Fig. 11 (b) The relative distance between robot R1 and robot
R2

Fig. 11 (c) The relative bearing between robot R1 and robot
R2

Fig. 11 (d) The relative orientation between robot R1 and
robot R2

The leader robot in the group is controlled by a joystick
and runs an arbitrary trajectory, as shown in Fig. 11(a).
Each follower robot in the group is controlled by decentral-
ized leader-follower controller (18) with the desired config-

uration qqqd = (ld12 ϕd
12)

T
= (40cm 2π/3)T. Under the

proposed formation controller (18), the trajectories of the
two follower robots, as recorded by the vision system, are
depicted in Fig. 11(a). The corresponding formation states
are shown in Fig. 11(b) and Fig. 11(c). Both of the tracking
errors are limited when the formation is in the steady state.
When the trajectory of the leader robot is not smooth, the
rotation motion of the leader robot varies with high fre-
quency. As a result, the perturbations from the internal
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dynamics becomes larger, as shown in Fig. 11(d). As de-
picted in Fig. 11(b) and Fig. 11(c), in this stage, both of
the formation tracking errors remain bounded and are in-
fluenced little by the varying of internal state, showing that
the formation system is robust to the perturbation from the
internal dynamics.

7 Conclusions

In this paper, we have derived a second order kinematics
model for leader-follower formation of mobile robots. Based
on this model, a robust controller is proposed to control the
leader-follower formation using only the relative measure-
ment of the motion states between robots. The proposed
controller does not need global sensor for formation con-
trol, and makes the closed-loop formation system robust
to the perturbations from internal dynamics and the un-
certainty associated with the absolute acceleration of the
leader robot. Furthermore, a robust adaptive controller is
developed, as an upgrading version of the robust controller,
to deal with the parameter uncertainty associated with the
rotation center of the follower robots. Simulation and ex-
perimental results have demonstrated the effectiveness of
the proposed methods.
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