

L. Wang and Y. Jin (Eds.): FSKD 2005, LNAI 3613, pp. 987 – 1000, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Construction of Fuzzy Models for Dynamic Systems
Using Multi-population Cooperative

Particle Swarm Optimizer

Ben Niu1, 2, Yunlong Zhu1, and Xiaoxian He1, 2

1 Shenyang Institute of Automation, Chinese Academy of Sciences,
 110016, Shenyang, China,

2 School of Graduate, Chinese Academy of Sciences,
100039, Beijing, China

{niuben, ylzhu}sia.cn

Abstract. A new fuzzy modeling method using Multi-population Cooperative
Particle Swarm Optimizer (MCPSO) for identification and control of nonlinear
dynamic systems is presented in this paper. In MCPSO, the population consists
of one master swarm and several slave swarms. The slave swarms execute
Particle Swarm Optimization (PSO) or its variants independently to maintain
the diversity of particles, while the particles in the master swarm enhance
themselves based on their own knowledge and also the knowledge of the
particles in the slave swarms. The MCPSO is used to automatic design of fuzzy
identifier and fuzzy controller for nonlinear dynamic systems. The proposed
algorithm (MCPSO) is shown to outperform PSO and some other methods in
identifying and controlling dynamic systems.

1 Introduction

The identification and control of nonlinear dynamical systems has been a challenging
problem in the control area for a long time. Since for a dynamic system, the output is
a nonlinear function of past output or past input or both, and the exact order of the
dynamical systems is often unavailable, the identification and control of this system is
much more difficult than that has been done in a static system. Therefore, the soft
computing methods such as neural networks [1-3], fuzzy neural networks [4-6] and
fuzzy inference systems [7] have been developed to cope with this problem.

Recently, interest in using recurrent networks has become a popular approach for
the identification and control of temporal problems. Many types of recurrent networks
have been proposed, among which two widely used categories are recurrent neural
networks (RNN) [3, 8, 9] and recurrent fuzzy networks (RFNN) [4, 10].

 On the other hand, fuzzy inference systems have been developed to provide
successful results in identifying and controlling nonlinear dynamical systems [7, 11].
Among the different fuzzy modeling techniques, the Takagi and Sugeno’s (T-S) type
fuzzy controllers have gained much attention due to its simplicity and generality [7,
12]. T-S fuzzy model describes a system by a set of local linear input-output relations
and it is seen that this fuzzy model can approach highly nonlinear dynamical systems.

988 B. Niu, Y. Zhu, and X. He

The bottleneck of the construction of a T-S model is the identification of the
antecedent membership functions, which is a nonlinear optimization problem.
Typically, both the premise parameters and the consequent parameters of T-S fuzzy
model are adjusted by using gradient descent optimization techniques [12-13]. Those
methods are sensitive to the choice of the initial parameters, easily got stuck in local
minima, and have poor generalization properties. This hampers the aposteriori
interpretation of the optimized T-S model.

The advent of evolutionary algorithm (EA) has attracted considerable interest in
the construction of fuzzy systems [14-16]. In [15], [16], EAs have been applied to
learn both the antecedent and consequent part of fuzzy rules, and models with both
fixed and varying number of rules have been considered. As compared to traditional
gradient-based computation system, evolutionary algorithm provides a more robust
and efficient approach for the construction of fuzzy systems.

Recently, a new evolutionary computation technique, the particle swarm
optimization (PSO) algorithm, is introduced by Kennedy and Eberhart [17, 18], and
has already come to be widely used in many areas [19-21]. As already has been
mentioned by Angeline [22], the original PSO, while successful in the optimization of
several difficult benchmark problems, presented problems in controlling the balance
between exploration and exploitation, namely when fine tuning around the optimum
is attempted.

In this paper we try to deal with this issue by introducing a multi-population
scheme, which consists of one master swarm and several slave swarms. The slave
swarms evolve independently to supply new promising particles (the position giving
the best fitness value) to the master swarm as evolution goes on. The master swarm
updates the particle states based on the best position discovered so far by all the
particles both in the slave swarms and its own. The interactions between the master
swarm and the slave swarms control the balance between exploration and exploitation
and maintain the population diversity, even when it is approaching convergence, thus
reducing the risk of convergence to local sub-optima.

The paper is devoted to a novel fuzzy modeling strategy to the fuzzy inference
system for identification and control of nonlinear dynamical systems. In this paper,
we will use the MCPSO algorithm to design the T-S type fuzzy identifier and fuzzy
controller for nonlinear dynamic systems, and the performance is also compared to
other methods to demonstrate its effectiveness.

The paper is organized as follows. Section 2 gives a review of PSO and a
description of the proposed algorithm MCPSO. Section 3 describes the T-S model and
a detailed design algorithm of fuzzy model by MCPSO. In Section 4, simulation
results of one nonlinear plant identification problem and one nonlinear dynamical
system control problems using fuzzy inference systems based on MCPSO are
presented. Finally, conclusions are drawn in Section 5.

2 PSO and MCPSO

2.1 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is inspired by natural concepts such as fish
schooling, bird flocking and human social relations. The basic PSO is a population

 Construction of Fuzzy Models for Dynamic Systems 989

based optimization tool, where the system is initialized with a population of random
solutions and searches for optima by updating generations. In PSO, the potential
solutions, called particles, fly in a D-dimension search space with a velocity which is
dynamically adjusted according to its own experience and that of its neighbors.

The location and velocity for the ith particle is represented as (, , ...)1 2x x x xi iDi i=

and (, , ...)1 2v v v vi iDi i= , respectively. The best previous position of the ith particle

is recorded and represented as (, , ...,),1 2P P P Pi iDi i= which is also called .pbest The

index of the best particle among all the particles in the population is represented by

the symbol g , and pg is called .gbest At each time step t , the particles are

manipulated according to the following equations:

(1) () (()) (())1 1 2 2v t v t R c P x t R c P x tgi ii i i+ = + − + − (1)

(1) () ()x t x t v ti i i+ = + (2)

where
1R and

2R are random values within the interval [0, 1],
1c

and
2c are

acceleration constants. For Eqn. (1), the portion of the adjustment to the velocity
influenced by the individual’s own pbest position is considered as the cognition

component, and the portion influenced by gbest is the social component.

A drawback of the aforementioned version of PSO is associated with the lack of a
mechanism responsible for the control of the magnitude of the velocities, which
fosters the danger of swarm explosion and divergence. To solve this problem, Shi
and Eberhart [23] later introduced an inertia term w by modifying (1) to become:

(1) () (()) (())1 1 2 2v t w v t R c P x t R c P x tgi i i i i+ = × + − + − (3)

They proposed that suitable selection of w will provides a balance between global
and local explorations, thus requiring less iteration on average to find a sufficiently
optimal solution. As originally developed, w often decreases linearly from about 0.9
to 0.4 during a run. In general, the inertia weight w is set according to the following
equation:

max min
max

max

w
w w iter

iter
w

= − ×
−

 (4)

where maxiter is the maximum number of iterations, and iter is the current number of

iterations.

2.2 Multi-population Cooperative Particle Swarm Optimization

The foundation of PSO is based on the hypothesis that social sharing of information
among conspecifics. It reflects the cooperative relationship among the individuals
(fish, bird, insect) within a group (school, flock, swarm). Obviously it is not the case

990 B. Niu, Y. Zhu, and X. He

of the nature. In natural ecosystem, many species have developed cooperative
interactions with other species to improve their survival. Such cooperative—also
called symbiosis—co-evolution can be found in organisms going from cells (e.g.,
eukaryotic organisms resulted probably from the mutualistic interaction between
prokaryotes and some cells they infected) to superior animals (e.g., African tick birds
obtain a steady food supply by cleaning parasites from the skin of giraffes, zebras,
and other animals) [24, 25].

Inspired by the phenomenon of symbiosis in the natural ecosystem, a master-slave
mode is incorporated into the PSO, and a Multi-population (species) Cooperative
Optimization (MCPSO) is thus presented. In our approach, the population consists of
one master swarm and several slave swarms. The symbiotic relationship between the
master swarm and slave swarms can keep a right balance of exploration and
exploitation, which is essential for the success of a given optimization task.

The master-slave communication model is shown in Fig.1, which is used to assign
fitness evaluations and maintain algorithm synchronization. Independent populations
(species) are associated with nodes, called slave swarms. Each node executes a single
PSO or its variants, including the update of location and velocity, and the creation of a
new local population. When all nodes are ready with the new generations, each node
then sends the best local individual to the master node. The master node selects the
best of all received individuals and evolves according to the following equations:

(1) () (()) (()) (())1 1 2 2 3 3
M M M M M M S Mv t wv t R c p x t R c p x t R c p x tg gi i i i i i+ = + − + − + − (5)

(1) () ()M M Mx t x t v ti i i+ = + (6)

where M represents the master swarm,
3c is the migration coefficient, and

3R is a

uniform random sequence in the range [0, 1]. Note that the particle’s velocity update
in the master swarm is associated with three factors:

i. Mpi : Previous best position of the master swarm.

ii. MPg : Best global position of the master swarm.

iii. Spg : Previous best position of the slave swarms.

Fig. 1. The master-slave model

Node k Node 2 Node 1

Local best

Master

 Construction of Fuzzy Models for Dynamic Systems 991

As Shown in Eqn. (5), the first term of the summation represents the inertia (the
particle keeps moving in the direction it had previously moved), the second term
represents memory (the particle is attracted to the best point in its trajectory), the third
term represents cooperation (the particle is attracted to the best point found by all
particles of master swarm) and the last represents information exchange (the particle
is attracted to the best point found by the slave swarms). The pseudocode for the
MCPSO algorithm is listed in Fig 2.

Algorithm MCPSO
Begin

Initialize all the populations
Evaluate the fitness value of each particle
Repeat

Do in parallel
Node i , 1 ≤≤ i K //K is the number of slaver swarms

End Do in parallel
Barrier synchronization //wait for all processes to finish

Select the fittest local individual Spg from the slave swarms

Evolve the mast swarm
// Update the velocity and position using (5) and (6), respectively
Evaluate the fitness value of each particle

Until a terminate-condition is met
End

Fig. 2. Pseudocode for the MCPSO algorithm

3 Fuzzy Model Based on MCPSO

3.1 T-S Fuzzy Model Systems

In this paper, the fuzzy model suggested by Takagi and Sugeno is employed to
represent a nonlinear system. A T-S fuzzy system is described by a set of fuzzy IF-
THEN rules that represent local linear input-output relations of nonlinear systems.
The overall system is then an aggregation of all such local linear models. More
precisely, a T-S fuzzy system is formulated in the following form:

=ˆ: is and ... is , then ... ,1 1 0 1 1
l l l l

n n n n
l liR if x A x A y x xα α α+ + + (7)

where ˆ (1)ly l r≤ ≤ is the output due to rule l
R and (1)l i niα ≤ ≤ , called the

consequent parameters, are the coefficients of the linear relation in the lth rule and

will be identified. ()lA xi i are the fuzzy variables defined as the following Gaussian

membership function:

992 B. Niu, Y. Zhu, and X. He

21() exp[()],2

lx ml i iA xi i l
iσ

−
= − ∗ (8)

where 1 , ...,1 ,l r i n x Ri≤ ≤ ≤ ≤ ∈ , l
mi and l

iσ represent the center (or mean) and the

width (or standard deviation) of the Gaussian membership function, respectively. l
mi

and l
iσ are adjustable parameters called the premise parameters, which will be

identified.
Given an input 0 0((), , ())1x k x kn , the final output ˆ ()y k of the fuzzy system is

inferred as follows:

,

0ˆ ()((())) ˆ () ()11 1ˆ () 0((())) ()11 1

nr l ll l ry k A x k y k w ki iil ly k nr l lrA x k w ki iil l

∑ ∑∏ == == =
∑ ∏ ∑== =

 (9)

where the weight strength)(kwl of the lth rule, is calculated by:

0() (()).1
l lnw k A x ki ii= ∏ = (10)

3.2 Fuzzy Model Strategy Based on MCPSO

The detailed design algorithm of fuzzy model by MCPSO is introduced in this
section. The overall learning process can be described as follows:

(1) Parameter representation
In our work, the parameter matrix, which consists of the premise parameters and

the consequent parameters described in section 3.1, is defined as a two dimensional
matrix, i.e.,

1 1 1 1 1 1 1
1 1 0 1
2 2 2 2 2 2 2
1 1 0 1

1 1 0 1

m mn n n

m mn n n

r r r r r r rm mn n n

σ σ α α α

σ σ α α α

σ σ α α α

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

The size of the matrix can be represented by (3 1)D r n= × + .

(2) Parameter learning

a) In MCPSO, the master swarm and the slave swarm both work with the same
parameter settings except for the velocity update equation. Initially,

(2, 2)N n N n× ≥ ≥ individuals forming the population should be randomly

generated and the individuals can be divided into N swarms (one master swarm
and 1−N slave swarms). Each swarm contains n individuals with random

 Construction of Fuzzy Models for Dynamic Systems 993

positions and velocities on D dimensions. These individuals may be regarded as
particles in terms of PSO. In T-S fuzzy model system, the number of rules, r ,

should be assigned in advance. In addition, the maximum iterations maxw ,

minimum inertia weight minw and the learning parameters ,1 2c c , the migration

coefficient
3c should be assigned in advance. After initialization, new

individuals on the next generation are created by the following step.
b) For each particle, evaluate the desired optimization fitness function in D

variables. The fitness function is defined as the reciprocal of RMSE (root mean
quadratic error), which is used to evaluate various individuals within a
population of potential solutions. Considering the single output case for clarity,
our goal is to minimize the error function:

 21 ((1) (1))
1

K
RMSE y k y kp rK k

= + − +∑
=

 (11)

 where K is the total time steps, (1)y kp + is the inferred output and (1)y kr + is

the desired reference output..
c) Evaluate the fitness for each particle.
d) Compare the evaluated fitness value of each particle with it’s pbest . If current

value is better than pbest , then set the current location as the pbest location in

D-dimension space. Furthermore, if current value is better than gbest , then reset

gbest to the current index in particle array. This step will be executed in parallel

for both the master swarm and the slave swarms.
e) In each generation, after step d) is executed, the best-performing

particle S
pg among the slave swarms should be marked.

f) Update the velocity and position of all the particles in 1−N slave swarms
according to Eqn. (3) and Eqn. (2), respectively (Suppose that 1−N populations
of SPSO with the same parameter setting are involved in MCPSO as the slave
swarms).

g) Update the velocity and position of all the particles in the master swarm
according to Eqn. (5) and Eqn. (6), respectively.

(3) Termination condition
The computations are repeated until the premise parameters and consequent

parameters are converged. It should be noted that after the operation in master swarm
and slaver swarm the values of the individual may exceed its reasonable range.
Assume that the domain of the ith input variable has been found to be

[min(), max()]x xi i from training data, then the domains of lmi
 and l

iσ are defined as

[min() , max()]x xi i i iδ δ− + and [,],d di i i iδ δ− + respectively, where iδ is a

small positive value defined as (max() min()) /10x xi i iδ = − , and di is the

predefined width of the Gaussian membership function, the value is set as

(max() min()) /x x ri i− , the variable r is the number of fuzzy rules.

994 B. Niu, Y. Zhu, and X. He

4 Illustrative Examples

In this section, two nonlinear dynamic applications, including an example of
identification of a dynamic system and an example of control of a dynamic system are
conducted to validate the capability of the fuzzy inference systems based on MCPSO
to handle the temporal relationship. The main reason for using these dynamic systems
is that they are known to be stable in the bounded input bounded output (BIBO)
sense.

A. Dynamic System Identification

The systems to be identified are dynamic systems whose outputs are functions of past
inputs and past outputs as well. For this dynamic system identification, a serial-
parallel model is adopted as identification configuration shown in Fig.3.

Example 1: The plant to be identified in this example is guided by the difference
equation [2, 4]:

(1) [(), (1), (2), (), (1)],y k f y k y k y k u k u kp p p p+ = − − − (12)

where

51 2 3 3 4(1)
[, , , ,] .51 2 3 4 2 21 3 2

x x x x x x
f x x x x x

x x

− +
=

+ +
 (13)

 Here, the current output of the plant depends on three previous outputs and two
previous inputs. Unlike the authors in [1] who applied a feedforward neural network
with five input nodes for feeding appropriate past values of ()y kp and ()u k , we only

use the current input ()u k and the output ()y kp as the inputs to identify the output of

the plant (1)y kp + . In training the fuzzy model using MCPSO for the nonlinear plant,

we use only ten epochs and there are 900 time steps in each epoch. Similar to the
inputs used in [2, 3]. The input is an independent and identically distributed (iid)
uniform sequence over [-2, 2] for about half of the 900 time steps and a single
sinusoid given by 1.05 * sin(/ 45)kπ for the remaining time steps. In applying

MCPSO to this plant, the number of swarms 4=N , the population size of each swarm
20=n , are chosen, i.e., 80 individuals are initially randomly generated in a

population. The number r of the fuzzy rules is set to be 4. For master swarm, inertial

weights max ,w min ,w the acceleration constants , 21 cc , and the migration coefficient

3c , are set to 0.35, 0.1, 1.5, 1.5 and 0.8, respectively. In slave swarms the inertial

weights and the acceleration constants are the same as those used in master swarm. To
show the superiority of MCPSO, the fuzzy identifiers designed by PSO are also
applied to the same identification problem. In PSO, the population size is set as 80
and initial individuals are the same as those used in MCPSO. For fair comparison, the

 Construction of Fuzzy Models for Dynamic Systems 995

other parameters, max ,w min ,w , 21 cc are the same as those defined in MCPSO. To

see the identified result, the following input as used in [3, 4] is adopted for test:

() sin(/ 25), 250
 1.0, 250 500
 1.0, 500 750
 0.3sin(/ 25) 0.1sin(/ 32) 0.6sin(/10), 750 1000.

u k k k
k

k
k k k k

π

π π π

= <
= ≤ <
= − ≤ <
= + + ≤ <

 (14)

Fig. 3. Identification of nonlinear plant using MCPSO

0 200 400 600 800 1000
-1.5

-1

-0.5

0

0.5

1

time

 o
ut

pu
t

Fig. 4. Identification results using MCPSO in Example 1, where the solid curve denotes desired
output and the dotted curve denotes the actual output

Table 1. Performance comparisons with different methods for Example 1

Method RSONFIN RFNN TRFN-S PSO MCPSO
RMSE(train) 0.0248 0.0114 0.0084 0.0386 0.0146
RMSE (test) 0.0780 0.0575 0.0346 0.0372 0.0070

996 B. Niu, Y. Zhu, and X. He

Fig.4 shows the desired output (denoted as a solid curve) and the inferred output
obtained by using MCPSO (denoted as a dotted curve) for the testing input signal.
Table 1 gives the detailed identification results using different methods, where the
results of the methods RSONFIN, RFNN and TRFN-S come from literature [5]. From
the comparisons, we see that the fuzzy controller designed by MCPSO is superior to
the method using RSONFIN, and is slight inferior to the methods using RFNN and
TRFN-S. However, among the three types of methods, it achieves the highest
identification accuracy in the test part, which demonstrates its better generalized
ability. The results of MCPSO identifier also demonstrate the improved performance
compared to the results of the identifiers obtained by PSO. The abnormal
phenomenon that the test RMSE is smaller than the train RMSE using fuzzy identifier
based on PSO and MCPSO may attributes to the well-regulated input data in test part
(during time steps [250, 500] and [500, 750], the input data is equal to a constant).

B. Dynamic System Control

As compare to linear systems, for which there now exists considerable theory
regarding adaptive control, very litter is known concerning adaptive control of plants
governed by nonlinear equations. It is in the control of such systems that we are
primarily interested in this section. Based on MCPSO, the fuzzy controller is designed
for the control of dynamical systems. The control configuration and input-output
variables of MCPSO fuzzy controller are shown in Fig.5, and are applied to one
MISO (multi-input-single-output) plant control problem in the following example.
The comparisons with other control methods are also presented.

Example 2: The controlled plant is the same as that used in [2] and [5] and is given by

() (1)(() 2.5)
(1) ().2 21 () (1)

y k y k y kp p p
y k u kp

y k y kp p

− +
+ = +

+ + −
 (15)

In designing the fuzzy controller using MCPSO, the desired output yr is specified

by the following 250 pieces of data:

(1) 0.6 () 0.2 (1) (),1 250,
() 0.5sin(2 / 45) 0.2 sin(2 /15) 0.2 sin(2 / 90).

y k y k y k r k kr r r
r k k k kπ π π

+ = + − + ≤ ≤
= + +

 The inputs to MCPSO fuzzy controller are ()y kp and ()y kr and the output is).(ku

There are five fuzzy rules in MCPSO fuzzy controller, i.e., 5 ,r = resulting in total
of 35 free parameters. Other parameters in applying MCPSO are the same as those
used in Example 1. The fuzzy controller designed by PSO is also applied to the MISO
control problem and the parameters in using PSO are also the same as those defined in
Example 1.The evolution is processed for 100 generations and is repeated for 50 runs.
The averaged best-so-far RMSE value over 50 runs for each generation is shown in
Fig.6.

 Construction of Fuzzy Models for Dynamic Systems 997

Fig. 5. Dynamical system control configuration with MCPSO fuzzy controller

0 20 40 60 80 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

R
M

S
E

MCPSO
PSO

Fig. 6. Average best-so-far RMSE in each generation for PSO and MCPSO in Example 2

 From the figure, we can see that MCPSO converges with a higher speed compared
to PSO and obtains a better result. In fact, since the competition relationships of the
slave swarms, the master swarm will not be influenced much when a certain slave
swarms gets stuck at a local optima. Avoiding premature convergence allows MCPSO
continue search for global optima in optimization problems

The best and averaged RMSE error for the 50 runs after 100 generations of training
for each run are listed in Table 2, where the results of the methods GA and HGAPSO
are from [6]. It should be noted that the TRFN controller designed by HGPSO (or
GA) is evolved for 100 generations and repeated for 100 runs in literature [6]. To test
the performance of the designed fuzzy controller, another reference input ()r k is
given by:

() 0.3sin(2 / 50) 0.2 sin(2 / 25) 0.4 sin(2 / 60), 251 500.r k k k k kπ π π= + + ≤ ≤

998 B. Niu, Y. Zhu, and X. He

0 50 100 150 200 250
-4

-3

-2

-1

0

1

2

3

4

time step

ou
tp

ut

 (a)

0 50 100 150 200 250
-4

-3

-2

-1

0

1

2

3

4

time step

 o
ut

pu
t

 (b)

Fig. 7. The tracking performance by MCPSO controller in Example 2 for (a) training
and (b) test reference output, where the desired output is dotted as solid curve and the
actual output by a dotted curve

The best and averaged control performance for the test signal over 50 runs is also
listed in Table 2. From the comparison results, we can see that the fuzzy controller
based on MCPSO outperforms those based on GA and PSO greatly especially in the
test results, and reaches the same control level with the TRFN controller based on
HGPSO.

To demonstrate control performance using the MCPSO fuzzy controller for the
MISO control problem, one control performance of MCPSO is shown in Fig.7 for
both training and test control reference output.

 Construction of Fuzzy Models for Dynamic Systems 999

Table 2. Performance comparisons with different methods for Example 2

Method GA PSO HGAPSO MCPSO
RMSE (train mean) 0.2150 0.1364 0.0890 0.1024
RMSE (train best) 0.1040 0.0526 0.0415 0.0518
RMSE (test mean) — 0.1526 — 0.1304
RMSE (test best) — 0.1024 — 0.0704

5 Conclusions

The paper proposed a multi-population cooperative particle swarm optimizer to
identify the T-S fuzzy model for processing nonlinear dynamic systems. In the
simulation part, we apply the suggested method to respectively design a fuzzy
identifier for a nonlinear dynamic plant identification problem and a fuzzy controller
for a nonlinear dynamic plant control problem. To demonstrate the effectiveness of
the proposed algorithm MCPSO, its performance is compared to several typical
methods in dynamical systems.

Acknowledgements

This work is supported by the National Natural Science Foundation of China
(No.70431003) and the National Basic Research Program of China (No.
2002CB312200). The first author would like to thank Prof. Q.H Wu of Liverpool
University for many valuable comments. Helpful discussions with Dr. B. Ye, Dr. L.Y.
Yuan and Dr. S. Liu are also gratefully acknowledged.

References

1. Narenda, K. S., Parthasarathy, K: Adaptive identification and control of dynamical
systems using neural networks. In: Proc. of the 28th IEEE Conf. on Decision and Control,
Vol. 2. Tampa, Florida, USA (1989) 1737-1738

2. Narenda, K. S., Parthasarathy, K.: Identification and control of dynamical systems using
neural networks. IEEE Trans. Neural Networks 1 (1990) 4-27

3. Sastry, P. S., Santharam, G., Unnikrishnan, K. P.: Memory neural networks for
identification and control of dynamical systems. IEEE Trans. Neural Networks 5 (1994)
306-319

4. Lee, C. H., Teng, C. C.: Identification and control of dynamic systems using recurrent
fuzzy neural networks. IEEE Trans. Fuzzy Syst. 8 (2000) 349-366

5. Juang, C. F.: A TSK-type recurrent fuzzy network for dynamic systems processing by
neural network and genetic algorithms. IEEE Trans. Fuzzy Syst. 10 (2002) 155-170

6. Juang, C. F.: A hybrid of genetic algorithm and particle swarm optimization for recurrent
network design. IEEE Trans. Syst. Man Cyber. B 34 (2004) 997-1006

7. Tseng, C. S., Chen, B. S., Uang, H. J.: Fuzzy tracking control design for nonlinear
dynamical systems via T-S fuzzy model. IEEE Trans. Fuzzy Syst. 9 (2001) 381-392

1000 B. Niu, Y. Zhu, and X. He

8. Chow, T. W. S., Yang, F.: A recurrent neural-network-based real-time learning control
strategy applying to nonlinear systems with unknown dynamics, IEEE Trans. Industrial
Electronics 45 (1998) 151-161

9. Gan, C., Danai, K.: Model-based recurrent neural network for modeling nonlinear
dynamic systems. IEEE Trans. Syst., Man, Cyber. 30 (2000) 344-351

10. Juang, C. F., Lin, C. T.: A Recurrent self-constructing neural fuzzy inference network.
IEEE Trans. neural networks. 10 (1999) 828-845

11. Wang, L. X., Mendel, J.M.: Back-propagation fuzzy systems as nonlinear dynamic
systems identifiers. In: Proc. IEEE Int. Conf. Fuzzy Syst., San Diego, USA (1992) 1409-
1418

12. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its application. IEEE Trans.
Syst., Man, Cyber. 15 (1985) 116-132

13. Tanaka K., Ikeda, T., Wang, H. O.: A unified approach to controlling chaos via an LMI-
based fuzzy control system design. IEEE Trans. Circuits and Systems 45 (1998) 1021-
1040

14. Karr, C. L.: Design of an adaptive fuzzy logic controller using a genetic algorithm. In:
Proc. of 4th Int. Conf. Genetic Algorithms, San Diego, USA (1991) 450–457

15. Wang, C. H., Hong, T. P., Tseng, S.S.: Integrating fuzzy knowledge by genetic
algorithms. IEEE Trans. Evol. Comput. 2 (1998) 138-149

16. Ishibuchi, H., Nakashima, T. and Murata, T.: Performance evaluation of fuzzy classifier
systems for multi dimensional pattern classification problems. IEEE Trans. Syst., Man,
Cyber. B 29 (1999) 601-618

17. Eberhart, R. C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proc. of
Int. Sym. Micro Mach. Hum. Sci., Nagoya, Japan (1995) 39-43

18. Kennedy, J., Eberhart, .R. C.: Particle swarm optimization. In: Proc. of IEEE Int. Conf. on
Neural Networks, Piscataway, NJ (1995) 1942-1948

19. Zhang, C., Shao, H., Li, Y.: Particle swarm optimization for evolving artificial network.
In: Proc. of IEEE Int. Conf. Syst., Man, Cyber., Vol.4. Nashville, Tennessee, USA (2000)
2487–2490

20. A. P. Engelbrecht , A. Ismail, : Training product unit neural networks. Stability Control:
Theory Appl. 2 (1999) 59–74

21. Mendes, R., Cortez, P. Rocha, M. and Neves, J.: Particle swarms for feedforward neural
network training. In: Proc. of Int. Joint Conf. on Neural Networks, Honolulu, USA (2002)
1895–1899

22. Angeline, P. J.: Evolutionary optimization versus particle swarm optimization: philosophy
and performance difference. In: Proc. of the 7th Annual Conf. on Evolutionary
Programming, San Diego, USA (1998) 601-610

23. Shi, Y., Eberhart, R. C.: A modified particle swarm optimizer. Proc. of IEEE Int. Conf. on
Evolutionary Computation, Anchorage, USA (1998) 69-73

24. Moriartv, D., Miikkulainen: Reinforcement learning through symbiotic evolution Machine
learning. 22 (1996) 11-32

25. Wiegand, R. P.: An analysis of cooperative coevolutionary Algorithms. PhD thesis,
George Mason University, Fairfax, Virginia, USA (2004)

,

	Introduction
	PSO and MCPSO
	Particle Swarm Optimization
	Multi-population Cooperative Particle Swarm Optimization

	Fuzzy Model Based on MCPSO
	T-S Fuzzy Model Systems
	Fuzzy Model Strategy Based on MCPSO

	Illustrative Examples
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

