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Abstract. A new fuzzy modeling method using Multi-population Cooperative 
Particle Swarm Optimizer (MCPSO) for identification and control of nonlinear 
dynamic systems is presented in this paper. In MCPSO, the population consists 
of one master swarm and several slave swarms. The slave swarms execute 
Particle Swarm Optimization (PSO) or its variants independently to maintain 
the diversity of particles, while the particles in the master swarm enhance 
themselves based on their own knowledge and also the knowledge of the 
particles in the slave swarms. The MCPSO is used to automatic design of fuzzy 
identifier and fuzzy controller for nonlinear dynamic systems. The proposed 
algorithm (MCPSO) is shown to outperform PSO and some other methods in 
identifying and controlling dynamic systems.  

1   Introduction 

The identification and control of nonlinear dynamical systems has been a challenging 
problem in the control area for a long time. Since for a dynamic system, the output is 
a nonlinear function of past output or past input or both, and the exact order of the 
dynamical systems is often unavailable, the identification and control of this system is 
much more difficult than that has been done in a static system. Therefore, the soft 
computing methods such as neural networks [1-3], fuzzy neural networks [4-6] and 
fuzzy inference systems [7] have been developed to cope with this problem.  

Recently, interest in using recurrent networks has become a popular approach for 
the identification and control of temporal problems. Many types of recurrent networks 
have been proposed, among which two widely used categories are recurrent neural 
networks (RNN) [3, 8, 9] and recurrent fuzzy networks (RFNN) [4, 10]. 

 On the other hand, fuzzy inference systems have been developed to provide 
successful results in identifying and controlling nonlinear dynamical systems [7, 11]. 
Among the different fuzzy modeling techniques, the Takagi and Sugeno’s (T-S) type 
fuzzy controllers have gained much attention due to its simplicity and generality [7, 
12]. T-S fuzzy model describes a system by a set of local linear input-output relations 
and it is seen that this fuzzy model can approach highly nonlinear dynamical systems. 
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The bottleneck of the construction of a T-S model is the identification of the 
antecedent membership functions, which is a nonlinear optimization problem. 
Typically, both the premise parameters and the consequent parameters of T-S fuzzy 
model are adjusted by using gradient descent optimization techniques [12-13]. Those 
methods are sensitive to the choice of the initial parameters, easily got stuck in local 
minima, and have poor generalization properties. This hampers the aposteriori 
interpretation of the optimized T-S model.  

The advent of evolutionary algorithm (EA) has attracted considerable interest in 
the construction of fuzzy systems [14-16]. In [15], [16], EAs have been applied to 
learn both the antecedent and consequent part of fuzzy rules, and models with both 
fixed and varying number of rules have been considered. As compared to traditional 
gradient-based computation system, evolutionary algorithm provides a more robust 
and efficient approach for the construction of fuzzy systems.  

Recently, a new evolutionary computation technique, the particle swarm 
optimization (PSO) algorithm, is introduced by Kennedy and Eberhart [17, 18], and 
has already come to be widely used in many areas [19-21]. As already has been 
mentioned by Angeline [22], the original PSO, while successful in the optimization of 
several difficult benchmark problems, presented problems in controlling the balance 
between exploration and exploitation, namely when fine tuning around the optimum 
is attempted.  

In this paper we try to deal with this issue by introducing a multi-population 
scheme, which consists of one master swarm and several slave swarms. The slave 
swarms evolve independently to supply new promising particles (the position giving 
the best fitness value) to the master swarm as evolution goes on. The master swarm 
updates the particle states based on the best position discovered so far by all the 
particles both in the slave swarms and its own. The interactions between the master 
swarm and the slave swarms control the balance between exploration and exploitation 
and maintain the population diversity, even when it is approaching convergence, thus 
reducing the risk of convergence to local sub-optima. 

The paper is devoted to a novel fuzzy modeling strategy to the fuzzy inference 
system for identification and control of nonlinear dynamical systems. In this paper, 
we will use the MCPSO algorithm to design the T-S type fuzzy identifier and fuzzy 
controller for nonlinear dynamic systems, and the performance is also compared to 
other methods to demonstrate its effectiveness. 

The paper is organized as follows. Section 2 gives a review of PSO and a 
description of the proposed algorithm MCPSO. Section 3 describes the T-S model and 
a detailed design algorithm of fuzzy model by MCPSO. In Section 4, simulation 
results of one nonlinear plant identification problem and one nonlinear dynamical 
system control problems using fuzzy inference systems based on MCPSO are 
presented. Finally, conclusions are drawn in Section 5.  

2   PSO and MCPSO 

2.1  Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is inspired by natural concepts such as fish 
schooling, bird flocking and human social relations. The basic PSO is a population 
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based optimization tool, where the system is initialized with a population of random 
solutions and searches for optima by updating generations. In PSO, the potential 
solutions, called particles, fly in a D-dimension search space with a velocity which is 
dynamically adjusted according to its own experience and that of its neighbors.  

The location and velocity for the ith particle is represented as ( , , ... )1 2x x x xi iDi i=  

and ( , , ... )1 2v v v vi iDi i= , respectively. The best previous position of the ith particle 

is recorded and represented as ( , , ..., ),1 2P P P Pi iDi i=  which is also called .pbest The 

index of the best particle among all the particles in the population is represented by 

the symbol g , and pg is called .gbest  At each time step t , the particles are 

manipulated according to the following equations: 

( 1) ( ) ( ( )) ( ( ))1 1 2 2v t v t R c P x t R c P x tgi ii i i+ = + − + −  (1) 

( 1) ( ) ( )x t x t v ti i i+ = +  (2) 

where 
1R and 

2R  are random values within the interval [0, 1], 
1c

and 
2c are 

acceleration constants. For Eqn. (1), the portion of the adjustment to the velocity 
influenced by the individual’s own pbest  position is considered as the cognition 

component, and the portion influenced by gbest  is the social component.  

A drawback of the aforementioned version of PSO is associated with the lack of a 
mechanism responsible for the control of the magnitude of the velocities, which 
fosters the danger of swarm explosion and divergence. To solve this problem, Shi 
and Eberhart [23] later introduced an inertia term w by modifying (1) to become: 

( 1) ( ) ( ( )) ( ( ))1 1 2 2v t w v t R c P x t R c P x tgi i i i i+ = × + − + −  (3) 

They proposed that suitable selection of w  will provides a balance between global 
and local explorations, thus requiring less iteration on average to find a sufficiently 
optimal solution. As originally developed, w  often decreases linearly from about 0.9 
to 0.4 during a run. In general, the inertia weight w  is set according to the following 
equation: 

max min
max

max

w
w w iter

iter
w

= − ×
−

 (4) 

where maxiter is the maximum number of iterations, and iter  is the current number of 

iterations. 

2.2   Multi-population Cooperative Particle Swarm Optimization 

The foundation of PSO is based on the hypothesis that social sharing of information 
among conspecifics. It reflects the cooperative relationship among the individuals 
(fish, bird, insect) within a group (school, flock, swarm). Obviously it is not the case 
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of the nature. In natural ecosystem, many species have developed cooperative 
interactions with other species to improve their survival. Such cooperative—also 
called symbiosis—co-evolution can be found in organisms going from cells (e.g., 
eukaryotic organisms resulted probably from the mutualistic interaction between 
prokaryotes and some cells they infected) to superior animals (e.g., African tick birds 
obtain a steady food supply by cleaning parasites from the skin of giraffes, zebras, 
and other animals) [24, 25]. 

Inspired by the phenomenon of symbiosis in the natural ecosystem, a master-slave 
mode is incorporated into the PSO, and a Multi-population (species) Cooperative 
Optimization (MCPSO) is thus presented. In our approach, the population consists of 
one master swarm and several slave swarms. The symbiotic relationship between the 
master swarm and slave swarms can keep a right balance of exploration and 
exploitation, which is essential for the success of a given optimization task. 

The master-slave communication model is shown in Fig.1, which is used to assign 
fitness evaluations and maintain algorithm synchronization. Independent populations 
(species) are associated with nodes, called slave swarms. Each node executes a single 
PSO or its variants, including the update of location and velocity, and the creation of a 
new local population. When all nodes are ready with the new generations, each node 
then sends the best local individual to the master node. The master node selects the 
best of all received individuals and evolves according to the following equations: 

( 1) ( ) ( ( )) ( ( )) ( ( ))1 1 2 2 3 3
M M M M M M S Mv t wv t R c p x t R c p x t R c p x tg gi i i i i i+ = + − + − + −  (5) 

( 1) ( ) ( )M M Mx t x t v ti i i+ = +  (6) 

where M represents the master swarm, 
3c  is the migration coefficient, and 

3R  is a 

uniform random sequence in the range [0, 1]. Note that the particle’s velocity update 
in the master swarm is associated with three factors: 

i. Mpi : Previous best position of the master swarm. 

ii. MPg : Best global position of the master swarm. 

iii. Spg : Previous best position of the slave swarms. 

 

Fig. 1. The master-slave model 

Node k Node 2  Node 1 

Local best

Master
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As Shown in Eqn. (5), the first term of the summation represents the inertia (the 
particle keeps moving in the direction it had previously moved), the second term 
represents memory (the particle is attracted to the best point in its trajectory), the third 
term represents cooperation (the particle is attracted to the best point found by all 
particles of master swarm) and the last represents information exchange (the particle 
is attracted to the best point found by the slave swarms). The pseudocode for the 
MCPSO algorithm is listed in Fig 2. 

Algorithm MCPSO 
Begin 

Initialize all the populations 
Evaluate the fitness value of each particle 
Repeat 

Do in parallel 
Node i , 1 ≤≤ i  K  //K is the number of slaver swarms 

End Do in parallel 
Barrier synchronization  //wait for all processes to finish 

Select the fittest local individual Spg  from the slave swarms 

Evolve the mast swarm  
// Update the velocity and position using (5) and (6), respectively 
Evaluate the fitness value of each particle 

Until a terminate-condition is met 
End 

Fig. 2. Pseudocode for the MCPSO algorithm 

3   Fuzzy Model Based on MCPSO 

3.1  T-S Fuzzy Model Systems 

In this paper, the fuzzy model suggested by Takagi and Sugeno is employed to 
represent a nonlinear system. A T-S fuzzy system is described by a set of fuzzy IF-
THEN rules that represent local linear input-output relations of nonlinear systems. 
The overall system is then an aggregation of all such local linear models. More 
precisely, a T-S fuzzy system is formulated in the following form: 

=ˆ:   is  and ...  is ,  then  ... ,1 1 0 1 1
l l l l

n n n n
l liR if x A x A y x xα α α+ + +  (7) 

where ˆ (1 )ly l r≤ ≤  is the output due to rule l
R  and (1 )l i niα ≤ ≤ , called the 

consequent parameters, are the coefficients of the linear relation in the lth rule and 

will be identified. ( )lA xi i  are the fuzzy variables defined as the following Gaussian 

membership function: 
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21( ) exp[ ( ) ],2

lx ml i iA xi i l
iσ

−
= − ∗  (8) 

where 1 , ...,1 ,l r i n x Ri≤ ≤ ≤ ≤ ∈ , l
mi  and l

iσ represent the center (or mean) and the 

width (or standard deviation) of the Gaussian membership function, respectively. l
mi  

and l
iσ  are adjustable parameters called the premise parameters, which will be 

identified. 
Given an input 0 0( ( ), , ( ))1x k x kn , the final output ˆ ( )y k of the fuzzy system is 

inferred as follows:  

,

0ˆ ( )( ( ( ))) ˆ ( ) ( )11 1ˆ ( ) 0( ( ( ))) ( )11 1

nr l ll l ry k A x k y k w ki iil ly k nr l lrA x k w ki iil l

∑ ∑∏ == == =
∑ ∏ ∑== =

 (9) 

where the weight strength )(kwl  of the lth rule, is calculated by: 

0( ) ( ( )).1
l lnw k A x ki ii= ∏ =  (10) 

3.2   Fuzzy Model Strategy Based on MCPSO 

The detailed design algorithm of fuzzy model by MCPSO is introduced in this 
section. The overall learning process can be described as follows: 

(1)  Parameter representation 
In our work, the parameter matrix, which consists of the premise parameters and 

the consequent parameters described in section 3.1, is defined as a two dimensional 
matrix, i.e., 

1 1 1 1 1 1 1
1 1 0 1
2 2 2 2 2 2 2
1 1 0 1

1 1 0 1

m mn n n

m mn n n

r r r r r r rm mn n n

σ σ α α α

σ σ α α α

σ σ α α α

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

The size of the matrix can be represented by (3 1)D r n= × + .  

(2)  Parameter learning 

a)  In MCPSO, the master swarm and the slave swarm both work with the same 
parameter settings except for the velocity update equation. Initially, 

( 2, 2)N n N n× ≥ ≥ individuals forming the population should be randomly 

generated and the individuals can be divided into N  swarms (one master swarm 
and 1−N  slave swarms). Each swarm contains n  individuals with random 
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positions and velocities on D dimensions. These individuals may be regarded as 
particles in terms of PSO. In T-S fuzzy model system, the number of rules, r , 

should be assigned in advance. In addition, the maximum iterations maxw , 

minimum inertia weight minw  and the learning parameters ,1 2c c , the migration 

coefficient 
3c  should be assigned in advance. After initialization, new 

individuals on the next generation are created by the following step. 
b)  For each particle, evaluate the desired optimization fitness function in D 

variables. The fitness function is defined as the reciprocal of RMSE (root mean 
quadratic error), which is used to evaluate various individuals within a 
population of potential solutions. Considering the single output case for clarity, 
our goal is to minimize the error function:  

                 21 ( ( 1) ( 1))
1

K
RMSE y k y kp rK k

= + − +∑
=

   (11) 

   where K  is the total time steps, ( 1)y kp + is the inferred output and ( 1)y kr +  is 

the desired reference output.. 
c)  Evaluate the fitness for each particle. 
d)  Compare the evaluated fitness value of each particle with it’s pbest . If current 

value is better than pbest , then set the current location as the pbest location in 

D-dimension space. Furthermore, if current value is better than gbest , then reset 

gbest to the current index in particle array. This step will be executed in parallel 

for both the master swarm and the slave swarms. 
e)  In each generation, after step d) is executed, the best-performing 

particle S
pg among the slave swarms should be marked.  

f)  Update the velocity and position of all the particles in 1−N  slave swarms 
according to Eqn. (3) and Eqn. (2), respectively (Suppose that 1−N  populations 
of SPSO with the same parameter setting are involved in MCPSO as the slave 
swarms). 

g)  Update the velocity and position of all the particles in the master swarm 
according to Eqn. (5) and Eqn. (6), respectively.  

(3)  Termination condition 
The computations are repeated until the premise parameters and consequent 

parameters are converged. It should be noted that after the operation in master swarm 
and slaver swarm the values of the individual may exceed its reasonable range. 
Assume that the domain of the ith input variable has been found to be 

[min( ),  max( )]x xi i  from training data, then the domains of lmi
 and l

iσ  are defined as 

[min( ) ,  max( ) ]x xi i i iδ δ− +  and [ ,  ],d di i i iδ δ− +  respectively, where iδ  is a 

small positive value defined as (max( ) min( )) /10x xi i iδ = − , and di  is the 

predefined width of the Gaussian membership function, the value is set as 

(max( ) min( )) /x x ri i− , the variable r is the number of fuzzy rules. 
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4   Illustrative Examples 

In this section, two nonlinear dynamic applications, including an example of 
identification of a dynamic system and an example of control of a dynamic system are 
conducted to validate the capability of the fuzzy inference systems based on MCPSO 
to handle the temporal relationship. The main reason for using these dynamic systems 
is that they are known to be stable in the bounded input bounded output (BIBO) 
sense. 

A. Dynamic System Identification  

The systems to be identified are dynamic systems whose outputs are functions of past 
inputs and past outputs as well. For this dynamic system identification, a serial-
parallel model is adopted as identification configuration shown in Fig.3. 

Example 1: The plant to be identified in this example is guided by the difference 
equation [2, 4]: 

( 1) [ ( ), ( 1), ( 2), ( ), ( 1)],y k f y k y k y k u k u kp p p p+ = − − −  (12) 

where  

51 2 3 3 4( 1)
[ , , , , ] .51 2 3 4 2 21 3 2

x x x x x x
f x x x x x

x x

− +
=

+ +
 (13) 

    Here, the current output of the plant depends on three previous outputs and two 
previous inputs. Unlike the authors in [1] who applied a feedforward neural network 
with five input nodes for feeding appropriate past values of ( )y kp  and ( )u k , we only 

use the current input ( )u k  and the output ( )y kp  as the inputs to identify the output of 

the plant ( 1)y kp + . In training the fuzzy model using MCPSO for the nonlinear plant, 

we use only ten epochs and there are 900 time steps in each epoch. Similar to the 
inputs used in [2, 3]. The input is an independent and identically distributed (iid) 
uniform sequence over [-2, 2] for about half of the 900 time steps and a single 
sinusoid given by 1.05 * sin( / 45)kπ  for the remaining time steps. In applying 

MCPSO to this plant, the number of swarms 4=N , the population size of each swarm 
20=n , are chosen, i.e., 80 individuals are initially randomly generated in a 

population. The number r of the fuzzy rules is set to be 4. For master swarm, inertial 

weights max ,w min ,w the acceleration constants , 21 cc , and the migration coefficient 

3c , are set to 0.35, 0.1, 1.5, 1.5 and 0.8, respectively. In slave swarms the inertial 

weights and the acceleration constants are the same as those used in master swarm. To 
show the superiority of MCPSO, the fuzzy identifiers designed by PSO are also 
applied to the same identification problem. In PSO, the population size is set as 80 
and initial individuals are the same as those used in MCPSO. For fair comparison, the 
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other parameters, max ,w min ,w , 21 cc  are the same as those defined in MCPSO. To 

see the identified result, the following input as used in [3, 4] is adopted for test: 

( ) sin( / 25), 250
       1.0, 250 500
       1.0, 500 750
       0.3sin( / 25) 0.1sin( / 32) 0.6sin( /10), 750 1000.

u k k k
k

k
k k k k

π

π π π

= <
= ≤ <
= − ≤ <
= + + ≤ <

 (14) 

 

 

Fig. 3. Identification of nonlinear plant using MCPSO 
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Fig. 4. Identification results using MCPSO in Example 1, where the solid curve denotes desired 
output and the dotted curve denotes the actual output 

Table 1. Performance comparisons with different methods for Example 1 

Method RSONFIN RFNN TRFN-S PSO MCPSO 
RMSE(train) 0.0248 0.0114 0.0084 0.0386 0.0146 
RMSE (test) 0.0780 0.0575 0.0346 0.0372 0.0070 
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Fig.4 shows the desired output (denoted as a solid curve) and the inferred output 
obtained by using MCPSO (denoted as a dotted curve) for the testing input signal. 
Table 1 gives the detailed identification results using different methods, where the 
results of the methods RSONFIN, RFNN and TRFN-S come from literature [5]. From 
the comparisons, we see that the fuzzy controller designed by MCPSO is superior to 
the method using RSONFIN, and is slight inferior to the methods using RFNN and 
TRFN-S. However, among the three types of methods, it achieves the highest 
identification accuracy in the test part, which demonstrates its better generalized 
ability. The results of MCPSO identifier also demonstrate the improved performance 
compared to the results of the identifiers obtained by PSO. The abnormal 
phenomenon that the test RMSE is smaller than the train RMSE using fuzzy identifier 
based on PSO and MCPSO may attributes to the well-regulated input data in test part 
(during time steps [250, 500] and [500, 750], the input data is equal to a constant). 

B. Dynamic System Control 

As compare to linear systems, for which there now exists considerable theory 
regarding adaptive control, very litter is known concerning adaptive control of plants 
governed by nonlinear equations. It is in the control of such systems that we are 
primarily interested in this section. Based on MCPSO, the fuzzy controller is designed  
for the control of dynamical systems. The control configuration and input-output 
variables of MCPSO fuzzy controller are shown in Fig.5, and are applied to one 
MISO (multi-input-single-output) plant control problem in the following example. 
The comparisons with other control methods are also presented. 

Example 2: The controlled plant is the same as that used in [2] and [5] and is given by 

( ) ( 1)( ( ) 2.5)
( 1) ( ).2 21 ( ) ( 1)

y k y k y kp p p
y k u kp

y k y kp p

− +
+ = +

+ + −
 (15) 

In designing the fuzzy controller using MCPSO, the desired output yr  is specified 

by the following 250 pieces of data: 

( 1) 0.6 ( ) 0.2 ( 1) ( ),1 250,
( ) 0.5sin(2 / 45) 0.2 sin(2 /15) 0.2 sin(2 / 90).

y k y k y k r k kr r r
r k k k kπ π π

+ = + − + ≤ ≤
= + +

 

    The inputs to MCPSO fuzzy controller are ( )y kp  and ( )y kr and the output is ).(ku  

There are five fuzzy rules in MCPSO fuzzy controller, i.e., 5 ,r =  resulting in total 
of 35 free parameters. Other parameters in applying MCPSO are the same as those 
used in Example 1. The fuzzy controller designed by PSO is also applied to the MISO 
control problem and the parameters in using PSO are also the same as those defined in 
Example 1.The evolution is processed for 100 generations and is repeated for 50 runs. 
The averaged best-so-far RMSE value over 50 runs for each generation is shown in 
Fig.6. 
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Fig. 5.  Dynamical system control configuration with MCPSO fuzzy controller 
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Fig. 6. Average best-so-far RMSE in each generation for PSO and MCPSO in Example 2 

    From the figure, we can see that MCPSO converges with a higher speed compared 
to PSO and obtains a better result. In fact, since the competition relationships of the 
slave swarms, the master swarm will not be influenced much when a certain slave 
swarms gets stuck at a local optima. Avoiding premature convergence allows MCPSO 
continue search for global optima in optimization problems  

The best and averaged RMSE error for the 50 runs after 100 generations of training 
for each run are listed in Table 2, where the results of the methods GA and HGAPSO 
are from [6]. It should be noted that the TRFN controller designed by HGPSO (or 
GA) is evolved for 100 generations and repeated for 100 runs in literature [6]. To test 
the performance of the designed fuzzy controller, another reference input ( )r k  is 
given by: 

( ) 0.3sin(2 / 50) 0.2 sin(2 / 25) 0.4 sin(2 / 60), 251 500.r k k k k kπ π π= + + ≤ ≤  
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  (b) 

Fig. 7. The tracking performance by MCPSO controller in Example 2 for (a) training 
and (b) test reference output, where the desired output is dotted as solid curve and the 
actual output by a dotted curve 

The best and averaged control performance for the test signal over 50 runs is also 
listed in Table 2. From the comparison results, we can see that the fuzzy controller 
based on MCPSO outperforms those based on GA and PSO greatly especially in the 
test results, and reaches the same control level with the TRFN controller based on 
HGPSO.  

To demonstrate control performance using the MCPSO fuzzy controller for the 
MISO control problem, one control performance of MCPSO is shown in Fig.7 for 
both training and test control reference output.  
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Table 2. Performance comparisons with different methods for Example 2 

 

Method GA PSO HGAPSO  MCPSO 
RMSE (train mean) 0.2150 0.1364 0.0890 0.1024 
RMSE (train best) 0.1040 0.0526 0.0415 0.0518 
RMSE (test mean) — 0.1526 — 0.1304 
RMSE (test best) — 0.1024 — 0.0704 

5   Conclusions  

The paper proposed a multi-population cooperative particle swarm optimizer to 
identify the T-S fuzzy model for processing nonlinear dynamic systems. In the 
simulation part, we apply the suggested method to respectively design a fuzzy 
identifier for a nonlinear dynamic plant identification problem and a fuzzy controller 
for a nonlinear dynamic plant control problem. To demonstrate the effectiveness of 
the proposed algorithm MCPSO, its performance is compared to several typical 
methods in dynamical systems.  
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