SIA OpenIR  > 机器人学研究室
Towards Scalable Summarization of Consumer Videos Via Sparse Dictionary Selection
Cong Y(丛杨); Yuan JS(袁浚菘); Luo JB(罗杰波)
作者部门机器人学研究室
关键词Group Sparse Key Frame Lasso Scene Analysis Video Analysis Video Skim Video Summarization
发表期刊IEEE TRANSACTIONS ON MULTIMEDIA
ISSN1520-9210
2012
卷号14期号:1页码:66-75
收录类别SCI ; EI
EI收录号20120514724056
WOS记录号WOS:000302701100007
产权排序1
资助机构This work was done when C. Yang was a research fellow at Nanyang Technological University and was supported in part by the Nanyang Assistant Professorship (SUG M58040015) to Dr. J. Yuan and NSFC (61105013). The associate editor coordinating the review of this manuscript and approving it for publication was Prof. Changsheng Xu.
摘要The rapid growth of consumer videos requires an effective and efficient content summarization method to provide a user-friendly way to manage and browse the huge amount of video data. Compared with most previous methods that focus on sports and news videos, the summarization of personal videos is more challenging because of its unconstrained content and the lack of any pre-imposed video structures. We formulate video summarization as a novel dictionary selection problem using sparsity consistency, where a dictionary of key frames is selected such that the original video can be best reconstructed from this representative dictionary. An efficient global optimization algorithm is introduced to solve the dictionary selection model with the convergence rates as O(1/root K-2) (where K is the iteration counter), in contrast to traditional sub-gradient descent methods of O(1/root K). Our method provides a scalable solution for both key frame extraction and video skim generation, because one can select an arbitrary number of key frames to represent the original videos. Experiments on a human labeled benchmark dataset and comparisons to the state-of-the-art methods demonstrate the advantages of our algorithm.
语种英语
WOS标题词Science & Technology ; Technology
WOS类目Computer Science, Information Systems ; Computer Science, Software Engineering ; Telecommunications
关键词[WOS]REPRESENTATION ; EXTRACTION ; FRAMEWORK ; MODEL
WOS研究方向Computer Science ; Telecommunications
引用统计
文献类型期刊论文
条目标识符http://ir.sia.cn/handle/173321/10040
专题机器人学研究室
通讯作者Cong Y(丛杨)
作者单位1.Department of EEE, Nanyang Technological University, Singapore 639798, Singapore
2.Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, China
3.Department of Computer Science, University of Rochester, Rochester, NY 14627, United States
推荐引用方式
GB/T 7714
Cong Y,Yuan JS,Luo JB. Towards Scalable Summarization of Consumer Videos Via Sparse Dictionary Selection[J]. IEEE TRANSACTIONS ON MULTIMEDIA,2012,14(1):66-75.
APA Cong Y,Yuan JS,&Luo JB.(2012).Towards Scalable Summarization of Consumer Videos Via Sparse Dictionary Selection.IEEE TRANSACTIONS ON MULTIMEDIA,14(1),66-75.
MLA Cong Y,et al."Towards Scalable Summarization of Consumer Videos Via Sparse Dictionary Selection".IEEE TRANSACTIONS ON MULTIMEDIA 14.1(2012):66-75.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Towards Scalable Sum(2123KB)期刊论文作者接受稿开放获取ODC PDDL浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Cong Y(丛杨)]的文章
[Yuan JS(袁浚菘)]的文章
[Luo JB(罗杰波)]的文章
百度学术
百度学术中相似的文章
[Cong Y(丛杨)]的文章
[Yuan JS(袁浚菘)]的文章
[Luo JB(罗杰波)]的文章
必应学术
必应学术中相似的文章
[Cong Y(丛杨)]的文章
[Yuan JS(袁浚菘)]的文章
[Luo JB(罗杰波)]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Towards Scalable Summarization of Consumer Videos Via Sparse Dictionary Selection.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。