中国科学院沈阳自动化研究所机构知识库
Advanced  
SIA OpenIR  > 光电信息技术研究室  > 期刊论文
题名: 基于Grassmann流形的仿射不变形状识别
其他题名: Affine-invariant Shape Recognition Using Grassmann Manifold
作者: 刘云鹏 ; 李广伟 ; 史泽林
作者部门: 光电信息技术研究室
关键词: 形状识别 ; Grassmann流形 ; 仿射不变 ; 形状空间 ; 形状均值
刊名: 自动化学报
ISSN号: 0254-4156
出版日期: 2012
卷号: 38, 期号:2, 页码:248-258
收录类别: EI ; CSCD
产权排序: 1
摘要: 传统的Kendall形状空间理论仅适用于相似变换,然而成像过程中目标发生的几何变形在更多情形时应该用仿射变换来刻画.基于Grassmann流形理论,本文分析了仿射不变形状空间的非线性几何结构,提出了基于Grassmann流形的仿射不变形状识别算法.算法首先对训练集中的每类形状分别计算形状均值和方差,进而在形状均值附近的切空间构建多变量正态分布;最后,根据测试形状的观测和先验形状模型求解测试形状的最大似然类,对形状进行贝叶斯分类.MPEG7形状数据库的实验结果表明,与传统Kendall形状分析中的基于Procrustean度量识别算法相比,本文识别算法具有明显优势;真实场景中的目标识别结果进一步表明,本文算法对仿射变形有更好的适应能力,在复杂场景下能以较高的后验概率辨识出目标类别.
英文摘要: Traditional Kendall shape space theory is only applied to similar transform. However, geometric transforms of the object in the imaging process should be represented by affine transform at most situations. We analyze the nonlinear geometry structure of the affine invariant shape space and propose an affine-invariant shape recognition algorithm based on Grassmann manifold geometry. Firstly, we compute the mean shape and covariance for every shape class in the train sets. Then, we construct their norm probability models on the tangent space at each mean shape. Finally, we compute the maximum likelihood class according to the measured object and prior learned shape models. We use the proposed algorithm to recognize shapes in standard shape dataset and real images. Experiment results on MPEG-7 shape dataset show that our recognition algorithm outperforms the algorithm based on Procrustean metric in traditional Kendall shape space theory. Experiment results on real images also show that the proposed algorithm exhibits higher capacity to affine transform than the Procrustean metric based algorithm and can recognize object classes with higher posterior probability. 更多
语种: 中文
Citation statistics:
内容类型: 期刊论文
URI标识: http://ir.sia.cn/handle/173321/10048
Appears in Collections:光电信息技术研究室_期刊论文

Files in This Item: Download All
File Name/ File Size Content Type Version Access License
基于Grassmann流形的仿射不变形状识别.pdf(8438KB)----开放获取View Download
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[刘云鹏]'s Articles
[李广伟]'s Articles
[史泽林]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[刘云鹏]‘s Articles
[李广伟]‘s Articles
[史泽林]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
文件名: 基于Grassmann流形的仿射不变形状识别.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2016  中国科学院沈阳自动化研究所 - Feedback
Powered by CSpace