SIA OpenIR  > 光电信息技术研究室
基于Grassmann流形的仿射不变形状识别
Alternative TitleAffine-invariant Shape Recognition Using Grassmann Manifold
刘云鹏; 李广伟; 史泽林
Department光电信息技术研究室
Source Publication自动化学报
ISSN0254-4156
2012
Volume38Issue:2Pages:248-258
Indexed ByEI ; CSCD
EI Accession number20121114863274
CSCD IDCSCD:4458694
Contribution Rank1
Funding Organization国家自然科学基金(60603097); 中国科学院国防创新基金(CXJJ-65)资助
Keyword形状识别 Grassmann流形 仿射不变 形状空间 形状均值
Abstract传统的Kendall形状空间理论仅适用于相似变换,然而成像过程中目标发生的几何变形在更多情形时应该用仿射变换来刻画.基于Grassmann流形理论,本文分析了仿射不变形状空间的非线性几何结构,提出了基于Grassmann流形的仿射不变形状识别算法.算法首先对训练集中的每类形状分别计算形状均值和方差,进而在形状均值附近的切空间构建多变量正态分布;最后,根据测试形状的观测和先验形状模型求解测试形状的最大似然类,对形状进行贝叶斯分类.MPEG7形状数据库的实验结果表明,与传统Kendall形状分析中的基于Procrustean度量识别算法相比,本文识别算法具有明显优势;真实场景中的目标识别结果进一步表明,本文算法对仿射变形有更好的适应能力,在复杂场景下能以较高的后验概率辨识出目标类别.
Other AbstractTraditional Kendall shape space theory is only applied to similar transform. However, geometric transforms of the object in the imaging process should be represented by affine transform at most situations. We analyze the nonlinear geometry structure of the affine invariant shape space and propose an affine-invariant shape recognition algorithm based on Grassmann manifold geometry. Firstly, we compute the mean shape and covariance for every shape class in the train sets. Then, we construct their norm probability models on the tangent space at each mean shape. Finally, we compute the maximum likelihood class according to the measured object and prior learned shape models. We use the proposed algorithm to recognize shapes in standard shape dataset and real images. Experiment results on MPEG-7 shape dataset show that our recognition algorithm outperforms the algorithm based on Procrustean metric in traditional Kendall shape space theory. Experiment results on real images also show that the proposed algorithm exhibits higher capacity to affine transform than the Procrustean metric based algorithm and can recognize object classes with higher posterior probability. 更多
Language中文
Citation statistics
Cited Times:5[CSCD]   [CSCD Record]
Document Type期刊论文
Identifierhttp://ir.sia.cn/handle/173321/10048
Collection光电信息技术研究室
Corresponding Author刘云鹏
Affiliation1.中国科学院沈阳自动化研究所
2.中国科学院光电信息处理重点实验室
3.辽宁省图像理解与视觉计算重点实验室
4.中国科学院研究生院
5.青岛大学管理科学与工程系
Recommended Citation
GB/T 7714
刘云鹏,李广伟,史泽林. 基于Grassmann流形的仿射不变形状识别[J]. 自动化学报,2012,38(2):248-258.
APA 刘云鹏,李广伟,&史泽林.(2012).基于Grassmann流形的仿射不变形状识别.自动化学报,38(2),248-258.
MLA 刘云鹏,et al."基于Grassmann流形的仿射不变形状识别".自动化学报 38.2(2012):248-258.
Files in This Item: Download All
File Name/Size DocType Version Access License
基于Grassmann流形的仿射不变形状(8438KB) 开放获取CC BY-NC-SAView Download
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[刘云鹏]'s Articles
[李广伟]'s Articles
[史泽林]'s Articles
Baidu academic
Similar articles in Baidu academic
[刘云鹏]'s Articles
[李广伟]'s Articles
[史泽林]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[刘云鹏]'s Articles
[李广伟]'s Articles
[史泽林]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: 基于Grassmann流形的仿射不变形状识别.pdf
Format: Adobe PDF
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.