SIA OpenIR  > 光电信息技术研究室
 基于三条相互垂直直线的单目位姿估计 Alternative Title Monocular Pose Determination from Three Perpendicular Lines 刘昶; 朱枫; 欧锦军 Department 光电信息技术研究室 Source Publication 模式识别与人工智能 ISSN 1003-6059 2012 Volume 25Issue:5Pages:737-744 Indexed By EI ; CSCD EI Accession number 20125115818457 CSCD ID CSCD:4715499 Contribution Rank 1 Funding Organization 国家自然科学基金资助项目(No.60705011) Keyword 单目视觉 位姿估计 三线透视问题(P3l) 线特征 Abstract 基于单目视觉的位姿估计是计算机视觉中的典型问题之一。文中利用目标物体上的三条相互垂直的直线特征和相机像平面上这些特征的对应获得已标定相机相对于目标物体的位姿参数,给出其闭式求解方法,并证明问题解的数量与相机光心和三条直线的相对位置有关.当光心位于两个特殊平面以外时存在唯一解,反之若在该两个平面之间则存在两个解,并且这两个解具有对称性,该性质可作为合理解的判别依据。.由于三条相互垂直的直线是长方体的三条边缘,而长方体在现实世界中广泛存在,该结论为应用直线特征进行单目视觉位姿估计及合作目标设计提供理论依据。 Other Abstract Monocular vision based pose determination is one of the typical problems in computer vision．If an object has three lines which are perpendicular to each other and intersect at two points，the pose parameters between a calibrated camera and the object can be calculated using 2D-3D correspondences of these three lines．A method is presented to find out the closed-form solutions of the problem．It is proved that the pose solution number depends on the location of camera‘s optical center from the three lines．If the optical center locates between two planes，the problem has two symmetry solutions． Otherwise，it has a unique solution． The symmetry property of the solutions can be used to distinguish the real one from two possible solutions． Three perpendicular lines are three edge lines of a cuboid and the cuboids exist widely in real world．Therefore，the above results are useful to design or select cooperative targets in real applications using line features． Language 中文 Citation statistics Document Type 期刊论文 Identifier http://ir.sia.cn/handle/173321/10257 Collection 光电信息技术研究室 Affiliation 1.中国科学院沈阳自动化研究所2.沈阳理工大学信息科学与工程学院3.中国科学院大学4.中国科学院光电信息处理重点实验室5.中国科学院沈阳自动化研究所沈 Recommended CitationGB/T 7714 刘昶,朱枫,欧锦军. 基于三条相互垂直直线的单目位姿估计[J]. 模式识别与人工智能,2012,25(5):737-744. APA 刘昶,朱枫,&欧锦军.(2012).基于三条相互垂直直线的单目位姿估计.模式识别与人工智能,25(5),737-744. MLA 刘昶,et al."基于三条相互垂直直线的单目位姿估计".模式识别与人工智能 25.5(2012):737-744.