SIA OpenIR  > 机器人学研究室
Abnormal event detection in crowded scenes using sparse representation
Cong Y(丛杨)1; Yuan JS(袁浚菘)2; Liu J(刘霁)3
作者部门机器人学研究室
关键词Convex Optimization Security Systems
发表期刊Pattern Recognition
ISSN0031-3203
2013
卷号46期号:7页码:1851-1864
收录类别SCI ; EI
EI收录号20131316148901
WOS记录号WOS:000317886600012
产权排序1
摘要

We propose to detect abnormal events via a sparse reconstruction over the normal bases. Given a collection of normal training examples, e.g., an image sequence or a collection of local spatio-temporal patches, we propose the sparse reconstruction cost (SRC) over the normal dictionary to measure the normalness of the testing sample. By introducing the prior weight of each basis during sparse reconstruction, the proposed SRC is more robust compared to other outlier detection criteria. To condense the over-completed normal bases into a compact dictionary, a novel dictionary selection method with group sparsity constraint is designed, which can be solved by standard convex optimization. Observing that the group sparsity also implies a low rank structure, we reformulate the problem using matrix decomposition, which can handle large scale training samples by reducing the memory requirement at each iteration from O( k2) to O(k) where k is the number of samples. We use the columnwise coordinate descent to solve the matrix decomposition represented formulation, which empirically leads to a similar solution to the group sparsity formulation. By designing different types of spatio-temporal basis, our method can detect both local and global abnormal events. Meanwhile, as it does not rely on object detection and tracking, it can be applied to crowded video scenes. By updating the dictionary incrementally, our method can be easily extended to online event detection. Experiments on three benchmark datasets and the comparison to the state-of-the-art methods validate the advantages of our method.

语种英语
WOS标题词Science & Technology ; Technology
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
关键词[WOS]Images
WOS研究方向Computer Science ; Engineering
引用统计
被引频次:101[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.sia.cn/handle/173321/10626
专题机器人学研究室
通讯作者Cong Y(丛杨)
作者单位1.State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, China
2.Department of EEE, Nanyang Technological University, Singapore, Singapore
3.Department of Computer Sciences, University of Wisconsin-Madison, United States
推荐引用方式
GB/T 7714
Cong Y,Yuan JS,Liu J. Abnormal event detection in crowded scenes using sparse representation[J]. Pattern Recognition,2013,46(7):1851-1864.
APA Cong Y,Yuan JS,&Liu J.(2013).Abnormal event detection in crowded scenes using sparse representation.Pattern Recognition,46(7),1851-1864.
MLA Cong Y,et al."Abnormal event detection in crowded scenes using sparse representation".Pattern Recognition 46.7(2013):1851-1864.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Abnormal event detec(2132KB)期刊论文作者接受稿开放获取ODC PDDL浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Cong Y(丛杨)]的文章
[Yuan JS(袁浚菘)]的文章
[Liu J(刘霁)]的文章
百度学术
百度学术中相似的文章
[Cong Y(丛杨)]的文章
[Yuan JS(袁浚菘)]的文章
[Liu J(刘霁)]的文章
必应学术
必应学术中相似的文章
[Cong Y(丛杨)]的文章
[Yuan JS(袁浚菘)]的文章
[Liu J(刘霁)]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Abnormal event detection in crowded scenes using sparse representation.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。