中国科学院沈阳自动化研究所机构知识库
Advanced  
SIA OpenIR  > 工业控制网络与系统研究室  > 学位论文
题名: 小区电力用户短期负荷预测及信息管理平台研究与实现
其他题名: Research in residential electricity load forecasting and Implementation of information management platform
作者: 冯海霞
导师: 王忠锋
分类号: TM714
关键词: 智能电网 ; 用电信息管理 ; 电力负荷 ; 短期负荷预测
页码: 71页
学位专业: 计算机应用技术
学位类别: 硕士
答辩日期: 2013-05-28
授予单位: 中国科学院沈阳自动化研究所
作者部门: 工业控制网络与系统研究室
中文摘要: 电网需求侧用电管理是智能电网的一个重要组成部分,居民生活用电在电网需求侧占据相当重要的位置,对电力系统用电和配电的影响越来越明显。在电力系统运营中,对小区用户用电进行规范化管理显得日益重要。但目前开发的用电管理系统多是针对供电局,目标是全省或全市各行各业的电力用户,目标群体宽泛,系统复杂,无法满足小区居民对自身用电情况查询和管理的需求,缺少有效用电、节约用电的具体指导。同时,发电和配电部门对居民生活用电的统计管理水平也有待提升。小区电力用户用电管理系统是居民用电电力系统的一个子系统,主要针对用电系统的信息采集和管理,适用于中小型小区。文中针对居民实际需求,从提高小区电力管理水平和方便居民用电、缴费、查询、合理支配电能等角度出发,开展负荷预测方法研究及用电信息管理平台开发,主要做了以下工作:(1) 对小区居民用户用电特征进行研究,了解用户的具体需求,为管理平台开发做需求分析工作。(2) 研究电力系统负荷预测方法,总结各方法的特点及适用场合。寻找适合的预测方法,并应用于该平台的电力负荷预测系统。(3) 从提高用电安全和用电效率的目的出发,以中科院沈阳自动化研究所无线抄表系统的研究应用为基础,利用无线智能抄表,采集用户的用电数据,对数据进行分析研究。(4) 开发小区电力用户用电信息管理平台,包括用户基本信息查询系统,电量电费收费系统,电力负荷预测系统,安全用电系统等。
英文摘要: Grid demand-side electricity management is an important component of the smart grid. Residential electricity consumption in grid demand side occupies a very important position and its influence to the electricity and distribution of the power system is becoming more and more obvious. In the operation of the power system, standardized management of the residential users is becoming increasingly important. But the current development of the power management system for multi-power supply bureau, the target user is the province or the city electricity companies. The target group is broad, complex and can not meet the residential areas electricity consumption and management demand. It lacks of efficient use of electricity, specific guidance to conserve electricity. At the same time, the statistical management level of power generation and distribution sector of the residential electricity consumption also needs to be improved. Residential electricity management system is a subsystem of electricity power system. It mainly works for the information collection and management of the electricity system, and suitable for small and medium-sized cell. The paper works from the view of the actual needs of the residents, improving the level of residential electricity management and convenient residential electricity bill payment and query. We make research on load forecasting methods and the power of information management platform development. The main work are as follows: (a) Make research on the electrical characteristics of the residential areas, understand the specific needs of users, and do requirements analysis developed for the management platform. (b) To study the power system load forecasting, summed up the characteristics of each method and application of occasions. I found a suitable forecasting method, and applied to the electric load forecasting system of the platform. (c) Proceed form improving the safe use of electricity and power efficiency purposes, and based on Shenyang Institute of Automation, Chinese Academy of Sciences research and application of wireless meter reading system. I analysis the wireless smart metering of residential electricity data. (d) Developed the residential electricity users of electricity information management platform, including user basic information query system, the electricity tariff collection system, power load forecasting system, and the electricity safe use system.
语种: 中文
产权排序: 1
内容类型: 学位论文
URI标识: http://ir.sia.cn/handle/173321/10744
Appears in Collections:工业控制网络与系统研究室_学位论文

Files in This Item:
File Name/ File Size Content Type Version Access License
小区电力用户短期负荷预测及信息管理平台研究与实现.pdf(3978KB)----限制开放 联系获取全文

Recommended Citation:
冯海霞.小区电力用户短期负荷预测及信息管理平台研究与实现.[硕士学位论文].中国科学院沈阳自动化研究所.2013
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[冯海霞]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[冯海霞]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2016  中国科学院沈阳自动化研究所 - Feedback
Powered by CSpace