SIA OpenIR  > 智能检测与装备研究室
基于机器视觉的红枣特征提取
Alternative TitleFeature Extraction of Jujube Based on Machine Vision
沈贵萍; 马钺
Department智能检测与装备研究室
Source Publication控制工程
ISSN1671-7848
2013
Volume20Issue:S1Pages:248-249,252
Contribution Rank1
Funding Organization中国科学院科技支新工程项目(Y1A514H502)
Keyword机器视觉 红枣 特征提取
Abstract红枣作为我国的特色优势农产品,受到各地的高度重视。针对我国红枣品质检测仍停留在靠人工进行识别判断的现状和机器视觉技术在水果品质检测中的广阔应用前景,研究了利用机器视觉技术精确检测红枣特征的方法。利用机器视觉系统首先获取红枣的图像,对获得的红枣图像进行图像分割,得到红枣轮廓图像,之后从红枣轮廓图像中提取红枣的边缘,最后从红枣边缘图像中提取红枣的面积、位置、周长等特征。实验结果表明,该方法检测速度快,正确率高,适用范围广,能够满足红枣自动级要求。
Other AbstractJujube is the characteristic agriculture product of our country, and has attached great importance. Jujube quality detection mainly relied on artificial method. On the other hand,machine vision technology had board application prospects in fruit quality detection. In this paper,the method of jujube feature extraction was studied. Firstly,jujube image was captured,then image segmentation, finally extracted the feature of area, location,girth and so on. The method had the advantage of high speed, high correct rate and wide application range, and satisfied the requirement of jujube automatic classification.
Language中文
Document Type期刊论文
Identifierhttp://ir.sia.cn/handle/173321/12463
Collection智能检测与装备研究室
Affiliation1.中国科学院研究生院
2.中国科学院沈阳自动化研究所
Recommended Citation
GB/T 7714
沈贵萍,马钺. 基于机器视觉的红枣特征提取[J]. 控制工程,2013,20(S1):248-249,252.
APA 沈贵萍,&马钺.(2013).基于机器视觉的红枣特征提取.控制工程,20(S1),248-249,252.
MLA 沈贵萍,et al."基于机器视觉的红枣特征提取".控制工程 20.S1(2013):248-249,252.
Files in This Item: Download All
File Name/Size DocType Version Access License
基于机器视觉的红枣特征提取.pdf(376KB) 开放获取CC BY-NC-SAView Download
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[沈贵萍]'s Articles
[马钺]'s Articles
Baidu academic
Similar articles in Baidu academic
[沈贵萍]'s Articles
[马钺]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[沈贵萍]'s Articles
[马钺]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: 基于机器视觉的红枣特征提取.pdf
Format: Adobe PDF
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.