中国科学院沈阳自动化研究所机构知识库
Advanced  
SIA OpenIR  > 智能检测与装备研究室  > 期刊论文
题名: 基于机器视觉的红枣特征提取
其他题名: Feature Extraction of Jujube Based on Machine Vision
作者: 沈贵萍 ; 马钺
作者部门: 智能检测与装备研究室
关键词: 机器视觉 ; 红枣 ; 特征提取
刊名: 控制工程
ISSN号: 1671-7848
出版日期: 2013
卷号: 20, 期号:S1, 页码:248-249,252
产权排序: 1
摘要: 红枣作为我国的特色优势农产品,受到各地的高度重视。针对我国红枣品质检测仍停留在靠人工进行识别判断的现状和机器视觉技术在水果品质检测中的广阔应用前景,研究了利用机器视觉技术精确检测红枣特征的方法。利用机器视觉系统首先获取红枣的图像,对获得的红枣图像进行图像分割,得到红枣轮廓图像,之后从红枣轮廓图像中提取红枣的边缘,最后从红枣边缘图像中提取红枣的面积、位置、周长等特征。实验结果表明,该方法检测速度快,正确率高,适用范围广,能够满足红枣自动级要求。
英文摘要: Jujube is the characteristic agriculture product of our country, and has attached great importance. Jujube quality detection mainly relied on artificial method. On the other hand,machine vision technology had board application prospects in fruit quality detection. In this paper,the method of jujube feature extraction was studied. Firstly,jujube image was captured,then image segmentation, finally extracted the feature of area, location,girth and so on. The method had the advantage of high speed, high correct rate and wide application range, and satisfied the requirement of jujube automatic classification.
语种: 中文
内容类型: 期刊论文
URI标识: http://ir.sia.cn/handle/173321/12463
Appears in Collections:智能检测与装备研究室_期刊论文

Files in This Item: Download All
File Name/ File Size Content Type Version Access License
基于机器视觉的红枣特征提取.pdf(376KB)----开放获取View Download

Recommended Citation:
沈贵萍;马钺.基于机器视觉的红枣特征提取,控制工程,2013,20(S1):248-249,252
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[沈贵萍]'s Articles
[马钺]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[沈贵萍]‘s Articles
[马钺]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
文件名: 基于机器视觉的红枣特征提取.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2016  中国科学院沈阳自动化研究所 - Feedback
Powered by CSpace