中国科学院沈阳自动化研究所机构知识库
Advanced  
SIA OpenIR  > 智能检测与装备研究室  > 期刊论文
题名: 基于计算机视觉的红枣形状识别方法研究
其他题名: Research on red dates shape recognition method based on computer vision
作者: 许敏 ; 马钺 ; 陈帅
作者部门: 智能检测与装备研究室
关键词: 红枣 ; 图像处理 ; 傅里叶级数 ; 识别
刊名: 传感器与微系统
ISSN号: 1000-9787
出版日期: 2013
卷号: 32, 期号:4, 页码:23-26
收录类别: CSCD
产权排序: 1
摘要: 以红枣为研究对象,通过图像处理技术获得红枣的边界轮廓。用极半径函数来表示红枣的边界轮廓,将极半径函数用傅里叶级数展开,并使用傅里叶级数前15项系数来描述红枣的形状特征。然后分别使用欧氏距离法和不规则度判别法对红枣的形状进行了分类实验研究,实验结果表明:2种方法对正常枣的分类准确率都比较高;对于畸形枣,欧氏距离法的识别率仅为35%,而不规则度判别法的识别率可达90%。
英文摘要: Based on image processing technology,the contour profile of Chinese red dates is extracted.Polar radius function is used to describe the contour profile,and polar radius function is expanded by Fourier series and the top 15 terms of the series are selected to describe the shape feature of the contour profile.Euclidean distance and irregularity degree discrimination method are applied to recognize the shape of red dates respectively,and experimental results indicate that the two methods have high accuracy of recognition on normal red dates,on malformation ones,the recognition rate of Euclidean distance is only 35 % and that of irregularity degree method can reach 90%.
语种: 中文
Citation statistics:
内容类型: 期刊论文
URI标识: http://ir.sia.cn/handle/173321/12464
Appears in Collections:智能检测与装备研究室_期刊论文

Files in This Item: Download All
File Name/ File Size Content Type Version Access License
基于计算机视觉的红枣形状识别方法研究.pdf(393KB)----开放获取View Download
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[许敏]'s Articles
[马钺]'s Articles
[陈帅]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[许敏]‘s Articles
[马钺]‘s Articles
[陈帅]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
文件名: 基于计算机视觉的红枣形状识别方法研究.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2016  中国科学院沈阳自动化研究所 - Feedback
Powered by CSpace