中国科学院沈阳自动化研究所机构知识库
Advanced  
SIA OpenIR  > 光电信息技术研究室  > 期刊论文
题名: 改进的神经网络红外图像非均匀性校正方法
其他题名: Improved Algorithm of Neural Network Used in IR Image Non-uniformity Correction
作者: 张红辉 ; 罗海波 ; 余新荣 ; 丁庆海
作者部门: 光电信息技术研究室
关键词: 红外图像 ; 非均匀性校正 ; 神经网络 ; 自适应调节
刊名: 红外技术
ISSN号: 1001-8891
出版日期: 2013
卷号: 35, 期号:4, 页码:232-237,241
收录类别: CSCD
产权排序: 1
摘要: 为解决传统基于神经网络的红外图像非均匀校正算法存在的目标模糊、拖影等问题,提出了一种增强型神经网络方法。该方法首先采用边缘保护滤波器得到期望值,以达到利用景像的边缘信息来指导校正系数更新的目的,在此基础上,通过自适应学习率以稳定和加速学习过程,实验结果表明,该方法解决了目标模糊和拖影问题,同时有效改善了非均匀性校正的效果和效率。
英文摘要: The traditional non-uniformity correction algorithm of infrared image based on neural network exists problems of the ghosting artifact and the target fade-out. To overcome these problems, the enhancement neural network method is proposed. It firstly obtains expected values by the edge-preserving filters, in order to guide correction coefficient updating by using the edge of the picture information, and stabilize and accelerate the learning process by using self-adaptive learning rate. The simulating experiment indicates that the new algorithm not only overcomes the problems of the ghosting artifact and the target fade-out, but also fairly reduces the non-uniformity.
语种: 中文
Citation statistics:
内容类型: 期刊论文
URI标识: http://ir.sia.cn/handle/173321/12516
Appears in Collections:光电信息技术研究室_期刊论文

Files in This Item: Download All
File Name/ File Size Content Type Version Access License
改进的神经网络红外图像非均匀性校正方法.pdf(938KB)----开放获取View Download
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[张红辉]'s Articles
[罗海波]'s Articles
[余新荣]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[张红辉]‘s Articles
[罗海波]‘s Articles
[余新荣]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
文件名: 改进的神经网络红外图像非均匀性校正方法.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2016  中国科学院沈阳自动化研究所 - Feedback
Powered by CSpace