SIA OpenIR  > 工业控制网络与系统研究室
Adaptive Fault Detection for Complex Dynamic Processes Based on JIT Updated Data Set
Li JN(李金娜); Li Y(李元); Yu HB(于海斌); Xie YH(谢彦红); Zhang C(张成)
作者部门工业控制网络与系统研究室
关键词Principal Component Analysis Observer Systems Diagnosis Fuzzy Identification Pca
发表期刊JOURNAL OF APPLIED MATHEMATICS
ISSN1110-757X
2012
卷号2012页码:1-17
收录类别SCI
WOS记录号WOS:000310301500001
产权排序1
资助机构National Natural Science Foundation of China [61174119, 61104093, 61034006, 61174026]; MOST [2010CB334705]; National High Technology Research and Development Program of China (863 Program) [2011AA040101]; Liaoning Province of China [L2012141, L2011064]
摘要A novel fault detection technique is proposed to explicitly account for the nonlinear, dynamic, and multimodal problems existed in the practical and complex dynamic processes. Just-in-time (JIT) detection method and k-nearest neighbor (KNN) rule-based statistical process control (SPC) approach are integrated to construct a flexible and adaptive detection scheme for the control process with nonlinear, dynamic, and multimodal cases. Mahalanobis distance, representing the correlation among samples, is used to simplify and update the raw data set, which is the first merit in this paper. Based on it, the control limit is computed in terms of both KNN rule and SPC method, such that we can identify whether the current data is normal or not by online approach. Noted that the control limit obtained changes with updating database such that an adaptive fault detection technique that can effectively eliminate the impact of data drift and shift on the performance of detection process is obtained, which is the second merit in this paper. The efficiency of the developed method is demonstrated by the numerical examples and an industrial case.
语种英语
WOS标题词Science & Technology ; Physical Sciences
WOS类目Mathematics, Applied
关键词[WOS]PRINCIPAL COMPONENT ANALYSIS ; NEAREST-NEIGHBOR RULE ; SYSTEM IDENTIFICATION ; DIAGNOSIS ; OBSERVER ; FUZZY ; PCA
WOS研究方向Mathematics
引用统计
被引频次:42[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.sia.cn/handle/173321/12528
专题工业控制网络与系统研究室
通讯作者Li JN(李金娜)
作者单位1.Department of Science, Shenyang University of Chemical Technology, Liaoning, Shenyang 110142, China
2.Lab of Industrial Control Networks and Systems, Shenyang Institute of Automation, Chinese Academy of Sciences, Liaoning, Shenyang 110016, China
3.College of Information Engineering, Shenyang University of Chemical Technology, Liaoning, Shenyang 110142, China
推荐引用方式
GB/T 7714
Li JN,Li Y,Yu HB,et al. Adaptive Fault Detection for Complex Dynamic Processes Based on JIT Updated Data Set[J]. JOURNAL OF APPLIED MATHEMATICS,2012,2012:1-17.
APA Li JN,Li Y,Yu HB,Xie YH,&Zhang C.(2012).Adaptive Fault Detection for Complex Dynamic Processes Based on JIT Updated Data Set.JOURNAL OF APPLIED MATHEMATICS,2012,1-17.
MLA Li JN,et al."Adaptive Fault Detection for Complex Dynamic Processes Based on JIT Updated Data Set".JOURNAL OF APPLIED MATHEMATICS 2012(2012):1-17.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Adaptive Fault Detec(1898KB)期刊论文出版稿开放获取ODC PDDL浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li JN(李金娜)]的文章
[Li Y(李元)]的文章
[Yu HB(于海斌)]的文章
百度学术
百度学术中相似的文章
[Li JN(李金娜)]的文章
[Li Y(李元)]的文章
[Yu HB(于海斌)]的文章
必应学术
必应学术中相似的文章
[Li JN(李金娜)]的文章
[Li Y(李元)]的文章
[Yu HB(于海斌)]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Adaptive Fault Detection for Complex Dynamic Processes Based on JIT Updated Data Set.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。