SIA OpenIR  > 工业控制网络与系统研究室
双卡尔曼滤波算法在锂电池SOC估算中的应用
Alternative TitleApplication of dual extended Kalman filtering algorithm in the state-of-charge estimation of lithium-ion battery
王笑天; 杨志家; 王英男; 王忠锋
Department工业控制网络与系统研究室
Source Publication仪器仪表学报
ISSN0254-3087
2013
Volume34Issue:8Pages:1732-1738
Indexed ByEI ; CSCD
EI Accession number20133816756958
CSCD IDCSCD:4928163
Contribution Rank1
Funding Organization国家863计划(2012AA041701)资助项目
Keyword双卡尔曼滤波 荷电状态 锂离子电池 电池模型
Abstract以在线估计锂离子电池组的荷电状态(SOC)为目的,建立了双卡尔曼滤波(DEKF)算法。以Thevenin电池模型和卡尔曼滤波算法为基础,对电池模型建立了状态空间表达式。分别采用最小二乘法和DEKF算法对该模型参数进行辨识,提高了该模型的精度,使电池模型能够较好地反映电池内部的真实状态。介绍了双卡尔曼滤波算法在线估算荷电状态的原理,并设计了相关的电池测试实验。实验结果表明在不同的工况环境下,该算法在线估计SOC具有较高的精度和对环境的适应度,最大误差小于4.5%。最后,验证了DEKF算法具有较好的收敛性和鲁棒性,可以有效解决初值估算不准和累积误差的问题。
Other AbstractThis paper proposes a dual extended Kalman filtering ( DEKF) algorithm for estimating the State-of-Charge ( SOC) of lithium-ion batteries on line. First of all, the state-space representation of the battery model is established based on Thevenin battery model and Kalman filtering algorithm. The least squares method and the DEKF algorithm are used to identify the battery model parameters,which improves the model accuracy and facilitates the battery model to well reflect the actual internal state of the battery, Moreover, the principle of using DEKF algorithm to estimate the inner SOC of the battery on line is introduced,and corresponding battery test experiments are designed. Experiment results demonstrate that under various operating conditions, the algorithm has relatively high accuracy and good environment adaptability when applied to evaluate SOC on line; and the maximum error is less than 4.5%. The DEKF algorithm is proved to have good convergence and robustness,and can efficiently solve the problems of inaccurate initial- value estimation and error accumulation.
Language中文
Citation statistics
Cited Times:19[CSCD]   [CSCD Record]
Document Type期刊论文
Identifierhttp://ir.sia.cn/handle/173321/14007
Collection工业控制网络与系统研究室
Affiliation1.中国科学院沈阳自动化研究所
2.中国科学院大学
3.辽宁省电力有限公司沈阳供电公司
Recommended Citation
GB/T 7714
王笑天,杨志家,王英男,等. 双卡尔曼滤波算法在锂电池SOC估算中的应用[J]. 仪器仪表学报,2013,34(8):1732-1738.
APA 王笑天,杨志家,王英男,&王忠锋.(2013).双卡尔曼滤波算法在锂电池SOC估算中的应用.仪器仪表学报,34(8),1732-1738.
MLA 王笑天,et al."双卡尔曼滤波算法在锂电池SOC估算中的应用".仪器仪表学报 34.8(2013):1732-1738.
Files in This Item: Download All
File Name/Size DocType Version Access License
双卡尔曼滤波算法在锂电池SOC估算中的应(591KB) 开放获取CC BY-NC-SAView Download
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[王笑天]'s Articles
[杨志家]'s Articles
[王英男]'s Articles
Baidu academic
Similar articles in Baidu academic
[王笑天]'s Articles
[杨志家]'s Articles
[王英男]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[王笑天]'s Articles
[杨志家]'s Articles
[王英男]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: 双卡尔曼滤波算法在锂电池SOC估算中的应用.pdf
Format: Adobe PDF
This file does not support browsing at this time
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.