SIA OpenIR  > 信息服务与智能控制技术研究室
时间序列异常点及突变点的检测算法
Alternative TitleOutliers and change-points detection algorithm for time series
苏卫星; 朱云龙; 刘芳; 胡琨元
Department信息服务与智能控制技术研究室
Source Publication计算机研究与发展
ISSN1000-1239
2014
Volume51Issue:4Pages:781-788
Indexed ByEI ; CSCD
EI Accession number20141717618862
CSCD IDCSCD:5098229
Contribution Rank1
Funding Organization国家科技支撑计划基金项目(2012BAF10B11,2014BAF07B01);辽宁省自然科学基金项目(201202226)
Keyword异常点 突变点 小波变换 Lipschitz指数 时间序列
Abstract针对传统突变点检测算法具有大延时的问题以及实际数据中同时含有突变点、异常点的实际情况,提出一种基于小波变换有效分数向量的异常点、突变点检测算法。该方法通过引入有效分数向量作为检测统计量,有效避免了传统检测统计量随着数据增多而无限增大的缺点;提出利用小波分析统计量的办法,有效地克服了传统突变点检测算法中存在大延时的缺陷;利用李氏指数及小波变换的关系,实现了在一个检测框架内同时在线检测异常点以及突变点,使得该检测算法更符合突变点及异常点同时存在的实际情况。仿真实验和性能比较结果证明了提出的异常点、突变点检测算法具有一定的有效性和实用性。
Other AbstractBecause the conventional change-points detection method exists the shortages on time delay and inapplicability for the time series mingled with outliers in the practical applications, an outlier and change-point detection algorithm for time series, which is based on the wavelet transform of the efficient score vector, is proposed in this paper. The algorithm introduces the efficient score vector to solve the problem of the conventional detection method that statistics often increass infinitely with the number of data added during the process of detection, and proposes a strategy of analyzing the statistics by using wavelet in order to avoid the serious time delay. In order to distinguish the outlier and change-point during the detection process, we propose a detecting framework based on the relationship between Lipschitz exponent and the wavelet coefficients, by which both outlier and change-point can be detected out meanwhile. The advantage of this method is that the detection effect is not subject to the influence of the outlier. It means that the method can deal with the time series containing both outliers and change-points under actual operating conditions and it is more suitable for the real application. Eventually, the effectiveness and practicality of the proposed detection method have been proved through simulation results.
Language中文
Citation statistics
Document Type期刊论文
Identifierhttp://ir.sia.cn/handle/173321/14747
Collection信息服务与智能控制技术研究室
Affiliation1.中国科学院沈阳自动化研究所
2.中国科学院大学
3.华晨汽车工程研究院
Recommended Citation
GB/T 7714
苏卫星,朱云龙,刘芳,等. 时间序列异常点及突变点的检测算法[J]. 计算机研究与发展,2014,51(4):781-788.
APA 苏卫星,朱云龙,刘芳,&胡琨元.(2014).时间序列异常点及突变点的检测算法.计算机研究与发展,51(4),781-788.
MLA 苏卫星,et al."时间序列异常点及突变点的检测算法".计算机研究与发展 51.4(2014):781-788.
Files in This Item:
File Name/Size DocType Version Access License
时间序列异常点及突变点的检测算法.pdf(418KB) 开放获取CC BY-NC-SAView Application Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[苏卫星]'s Articles
[朱云龙]'s Articles
[刘芳]'s Articles
Baidu academic
Similar articles in Baidu academic
[苏卫星]'s Articles
[朱云龙]'s Articles
[刘芳]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[苏卫星]'s Articles
[朱云龙]'s Articles
[刘芳]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: 时间序列异常点及突变点的检测算法.pdf
Format: Adobe PDF
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.