SIA OpenIR  > 智能产线与系统研究室
航天模拟器仿真与测控系统研究
Alternative TitleStudy on the simulation and measurement & control system for Space Simulator
边真真1,2
Department装备制造技术研究室
Thesis Advisor徐志刚
ClassificationTP391.9
Keyword对接 虚拟样机 轨迹规划 航天模拟器
Call NumberTP391.9/B67/2014
Pages80页
Degree Discipline模式识别与智能系统
Degree Name硕士
2014-05-28
Degree Grantor中国科学院沈阳自动化研究所
Place of Conferral沈阳
Abstract航天器空间对接是探月三期工程必须首先解决的关键性技术之一。对接机构的可靠性对上升器和轨道器的成功对接起着决定性的作用,因此,为了验证对接机构工作的可靠性,考查空间恶劣环境下对接机构的工作性能,在地面模拟航天器运动过程的全物理仿真试验是非常有必要的。 12-DOF航天模拟器仿真试验台可实现空间十二自由度微重力运动状态的物理仿真,该试验台主要用于国家探月三期绕月轨道飞行器对接与样品转移系统地面性能试验,可实现主动端和被动端航天模拟器的对接初始条件建立、对接、保持、样品转移和分离模拟试验,为探月三期航天器对接提供理论参考和实验数据。 首先,介绍了航天模拟器仿真平台的基本结构和组成,采用模块化设计思想,整个控制系统分为上位机和下位机,详细介绍了各部分的基本组成,并对测控系统中的平面测量原理进行了详细介绍。 然后,十二自由度仿真平台是一个多变量和非线性的复杂系统,其运动学分析和轨迹规划是运动控制的前提。本文首先采用坐标变换的方法对十二自由度平台进行运动学分析,针对航天模拟器对接、保持、分离阶段,运用时间最优的多项式插值法分别进行轨迹规划。 其次,利用NI虚拟样机实现仿真平台的虚拟原型运动仿真,零件在SOLIDWORKS完成装配,运动控制程序在LABVIEW中运用NI SOFTMOTION高级函数编写,运动模式分为两种:在线模式和离线模式。离线模式下的仿真,验证运动控制程序,检测模型碰撞,获取最优运动轨迹和模型最佳设计参数。在线运动通过现场传感器采集的数据驱动模型运动,实现运动过程的同步再现。 再次,搭建硬件仿真平台,测试了电机、陀螺性能,选取了适合项目需求的电机和陀螺。 最后,本文对所做的研究工作进行了总结,并对今后的工作进行了展望。
Other AbstractSpace docking is one of key technologies which should be captured firstly on the third phase of a three-step moon motion.Whether ascender and orbiter dock successfully or not is entirely dependent on the reliability of docking mechanism. In order to verify reliability and test performance under harsh environment, the ground physics simulation is essential. Aimed at the demand of docking and sample transfer simulation platform on the ground serving third phase of a three-step moon motion, 12-DOF Space Simulator simulation platform which can realize 12-DOF microgravity motion simulation is set up.This can provide theoretical and experimental data reference for Chinese lunar exploration program. Firstly, the basic structure and composition of space simulator are introduced, the whole control system is divided into upper and lower machine based on modular design concept.Basic composition are recommended detailedly, and plane measurement principle are described in detail. Secondly, space simulator is a nonlinear, multi-variable and complex system, kinematic analysis and trajectory planning is the basis for motion control. Using coordinate transformation to analyze kinematic, aimed at different performance requirement in docking, maintain and separation, a time-optimal trajectory planning polynomial interpolation is used. And then,space simulator platform’s motion simulation is carried out based on NI virtual prototype, parts are assembled in SOLIDWORKS, motion control program is compiled using NI SOFTMOTION advanced functions in LABVIEW.Motion mode is divided into two categories: offline data-driven mode (offline mode) and on-line data driven mode (online mode). Motion control procedures sre verified, collision is detected, then, optimal trajectory and design parameters are reachede in offline mode. The assembly is driven by the data from sensor acquisition to implement motion process’s reproduction synchronously. Thirdly, build platform to test motor and Gyro’s performance, and select suitable configuration. At last, the obtained research results are summarized and future work is addressed.
Language中文
Contribution Rank1
Document Type学位论文
Identifierhttp://ir.sia.cn/handle/173321/14780
Collection智能产线与系统研究室
Affiliation1.中国科学院沈阳自动化研究所
2.中国科学院大学
Recommended Citation
GB/T 7714
边真真. 航天模拟器仿真与测控系统研究[D]. 沈阳. 中国科学院沈阳自动化研究所,2014.
Files in This Item:
File Name/Size DocType Version Access License
航天模拟器仿真与测控系统研究 .pdf(4526KB) 开放获取CC BY-NC-SAApplication Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[边真真]'s Articles
Baidu academic
Similar articles in Baidu academic
[边真真]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[边真真]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.