中国科学院沈阳自动化研究所机构知识库
Advanced  
SIA OpenIR  > 信息服务与智能控制技术研究室  > 期刊论文
题名: 基于RBF神经网络的面状水体识别模型及其应用
其他题名: Surface Water Recognition Model Based on RBF Neural Network and Its Application
作者: 陈雪莲 ; 胡静涛
作者部门: 信息服务与智能控制技术研究室
关键词: 面状水体 ; 识别模型 ; RBF神经网络 ; DEM
刊名: 水电能源科学
ISSN号: 1000-7709
出版日期: 2014
卷号: 32, 期号:1, 页码:59-62, 83
产权排序: 1
摘要: 针对面状水体识别过程中面状水体数据特征不宜提取、伪洼地易与面状水体混淆的问题,通过分析面状水体的面积、深度和潜在出水口等基本DEM数据特征,构建了面状水体识别模型,并将面状水体的三个数据特征和面状水体识别模型的计算结果作为输入输出神经元,利用RBF神经网络对建立的面状水体识别模型进行了仿真验证。从全国1∶250 000 DEM数据中选取150组洼地数据作为样本数据,采用减聚类算法对RBF神经网络进行训练,训练时样本的最小平均相对误差为2.75%,仿真的准确率为98%,表明面状水体识别模型可解决面状水体和伪洼地难以区分的问题,并提高了面状水体识别的准确率。
英文摘要: Aiming at the problems of extraction of surface water data characteristics and easily confusing between pseudo-depression and surface water,the surface water recognition model was proposed based on the DEM data features that include area, depth and potential outlet. Three data features of surface water and computational result of recognition model were taken as input and output of neuron. And RBF neural network model was established to verify the surface water recognition model. 150 groups of depressions extracted from 1: 250 000 DEM data were taken as sample data. RBF neural network model was trained by using subtractive clustering method. The minimum average relative error was 2. 75% in the training of the samples. The recognition accuracy of the model was 98%. As the results,the proposed model solves the problem of difficulty distinguishing between surface water and pseudo-depression,and it improves the recognition accuracy rate.
语种: 中文
内容类型: 期刊论文
URI标识: http://ir.sia.cn/handle/173321/15190
Appears in Collections:信息服务与智能控制技术研究室_期刊论文

Files in This Item: Download All
File Name/ File Size Content Type Version Access License
基于RBF神经网络的面状水体识别模型及其应用.pdf(378KB)----开放获取View Download

Recommended Citation:
陈雪莲;胡静涛.基于RBF神经网络的面状水体识别模型及其应用,水电能源科学,2014,32(1):59-62, 83
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[陈雪莲]'s Articles
[胡静涛]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[陈雪莲]‘s Articles
[胡静涛]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
文件名: 基于RBF神经网络的面状水体识别模型及其应用.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2016  中国科学院沈阳自动化研究所 - Feedback
Powered by CSpace