SIA OpenIR  > 信息服务与智能控制技术研究室
基于元学习的污水水质集成软测量模型
Alternative TitleSoft-Sensor of Water Quality Based on Integrated ELM with Meta-Learning
丛秋梅; 苑明哲; 王宏; 庞强; 王景杨
Department信息服务与智能控制技术研究室
Source Publication信息与控制
ISSN1002-0411
2014
Volume43Issue:2Pages:248-252
Indexed ByCSCD
CSCD IDCSCD:5139190
Contribution Rank1
Funding Organization中国博士后科学基金面上资助项目(2013M530953,2013M532118); 国家自然科学基金资助项目(61034008,61004051)
Keyword污水处理 软测量 自适应加权融合 元学习
Abstract针对污水处理过程在运行工况频繁波动的情况下,单一水质软测量模型精度下降的问题,提出了污水水质集成软测量建模方法.模型由3层结构组成:基于模糊聚类-极限学习机(ELM,extreme learning machine)的预测子模型位于最底层,第2层采用自适应加权融合方法将子模型预测值进行集成,最上层采用基于信息熵的元学习机制管理融合权值.ELM的快速学习特点使模型具有较好的实时性能,自适应加权融合方法和元学习机制提高了模型泛化性,元学习机制跟踪污水处理过程运行状况的动态变化趋势.仿真结果表明,在多工况条件下,污水水质COD(chemical oxygen demand,化学需氧量)集成软测量模型...
Other AbstractA soft-sensor of water quality for wastewater treatment plants,which is based on an integrated model,is presented. The proposed soft-sensor aims to address the difficulty in using a single model to represent the characteristics of wastewater treatment processes with varying operating regimes. The soft-sensor is composed of three layers,in which a predictive sub-model based on FCM-ELMs are the bottom layer,adaptive weighted fusion method fusing predictive values of the sub-model are the middle layer,and a meta-learning mechanism based on information entropy updating fusion weights is the top layer. The meta-learning mechanism can track the dynamic trend of operating conditions of wastewater treatment plants. The quick learning advantage of ELM results in the soft-sensor showing excellent real-time performance. The adaptive weighted fusion method and meta-learning mechanism improve the model generalization. Simulation results show that the integrated model for COD is more accurate than other models.
Language中文
Citation statistics
Document Type期刊论文
Identifierhttp://ir.sia.cn/handle/173321/15192
Collection信息服务与智能控制技术研究室
Affiliation1.辽宁石油化工大学信息与控制工程学院
2.中国科学院沈阳自动化研究所信息服务与智能控制技术研究室
3.中国科学院网络化控制系统重点实验室
4.沈阳中科博微自动化技术有限公司
Recommended Citation
GB/T 7714
丛秋梅,苑明哲,王宏,等. 基于元学习的污水水质集成软测量模型[J]. 信息与控制,2014,43(2):248-252.
APA 丛秋梅,苑明哲,王宏,庞强,&王景杨.(2014).基于元学习的污水水质集成软测量模型.信息与控制,43(2),248-252.
MLA 丛秋梅,et al."基于元学习的污水水质集成软测量模型".信息与控制 43.2(2014):248-252.
Files in This Item:
File Name/Size DocType Version Access License
基于元学习的污水水质集成软测量模型.pd(587KB) 开放获取CC BY-NC-SAView Application Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[丛秋梅]'s Articles
[苑明哲]'s Articles
[王宏]'s Articles
Baidu academic
Similar articles in Baidu academic
[丛秋梅]'s Articles
[苑明哲]'s Articles
[王宏]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[丛秋梅]'s Articles
[苑明哲]'s Articles
[王宏]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: 基于元学习的污水水质集成软测量模型.pdf
Format: Adobe PDF
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.