SIA OpenIR  > 数字工厂研究室
基于近邻噪声处理的KNN缺失数据填补算法
其他题名Predicting Missing Values with KNN Based on the Elimination of Neighbor Noise
郝胜轩; 宋宏; 周晓锋
作者部门数字工厂研究室
关键词缺失数据填补 近邻 噪声最近邻
发表期刊计算机仿真
ISSN1006-9348
2014
卷号31期号:7页码:264-268
收录类别CSCD
CSCD记录号CSCD:5206116
产权排序1
资助机构北京市自然科学基金(7110001)
摘要在优化算法的研究中,针对KNN算法对缺失数据的填补效果会因为原始数据中存在噪声而受到严重影响的问题,根据待填补缺失数据最近邻的近邻关系,提出了一种新的缺失数据填补算法——ENN-KNN(Eliminate Neighbor Noise k-Nearest Neighbor)。通过比较待填补缺失数据每个最近邻的真实近邻程度能够有效地识别潜在的噪声最近邻。最后使用所有非噪声最近邻对待填补缺失数据进行填补,从而消除了噪声最近邻对填补结果的影响。通过观察四组UCI数据集的仿真结果,可知ENN-KNN算法的填补准确性总体上要优于KNN算法。
其他摘要Traditional KNN imputation method for dealing with missing data is severely affected by the noise in the original data. This paper presents a novel imputation method for dealing with missing data,which is based on the relationship of nearest neighbors of missing data-ENN-KNN( Eliminate Neighbor Noise k - Nearest Neighbor) . ENN - KNN imputation method can effectively identify potential noise nearest neighbor by comparing each real nearest degree of nearest neighbor of missing data. It uses all nearest neighbors which are not noise nearest neighbor to deal with missing data,for this reason it can eliminate the effect of noise nearest neighbor for dealing with missing data. The experiment results of four groups of UCI data sets show that the ENN - KNN imputation method is overall superior to KNN imputation method on the performance of prediction accuracy.
语种中文
引用统计
被引频次:1[CSCD]   [CSCD记录]
文献类型期刊论文
条目标识符http://ir.sia.cn/handle/173321/15198
专题数字工厂研究室
作者单位1.中国科学院沈阳自动化研究所
2.中国科学院大学
推荐引用方式
GB/T 7714
郝胜轩,宋宏,周晓锋. 基于近邻噪声处理的KNN缺失数据填补算法[J]. 计算机仿真,2014,31(7):264-268.
APA 郝胜轩,宋宏,&周晓锋.(2014).基于近邻噪声处理的KNN缺失数据填补算法.计算机仿真,31(7),264-268.
MLA 郝胜轩,et al."基于近邻噪声处理的KNN缺失数据填补算法".计算机仿真 31.7(2014):264-268.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
基于近邻噪声处理的KNN缺失数据填补算法(436KB) 开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[郝胜轩]的文章
[宋宏]的文章
[周晓锋]的文章
百度学术
百度学术中相似的文章
[郝胜轩]的文章
[宋宏]的文章
[周晓锋]的文章
必应学术
必应学术中相似的文章
[郝胜轩]的文章
[宋宏]的文章
[周晓锋]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 基于近邻噪声处理的KNN缺失数据填补算法.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。