Monocular Camera and IMU Integration for Indoor Position Estimation | |
Zhang YL(张吟龙); Tan JD(谈金东); Zeng ZM(曾子铭); Liang W(梁炜)![]() ![]() | |
作者部门 | 工业控制网络与系统研究室 |
会议名称 | 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) |
会议日期 | August 26-30 |
会议地点 | Chicago, IL, USA |
会议录名称 | 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) |
出版者 | IEEE |
出版地 | Piscataway, NJ, USA |
2014 | |
页码 | 1198-1201 |
收录类别 | EI ; CPCI(ISTP) |
EI收录号 | 20152100874188 |
WOS记录号 | WOS:000350044701049 |
产权排序 | 1 |
ISBN号 | 978-1-4244-7929-0 |
摘要 | This paper presents a monocular camera (MC) and inertial measurement unit (IMU) integrated approach for indoor position estimation. Unlike the traditional estimation methods, we fix the monocular camera downward to the floor and collect successive frames where textures are orderly distributed and feature points robustly detected, rather than using forward oriented camera in sampling unknown and disordered scenes with pre-determined frame rate and auto-focus metric scale. Meanwhile, camera adopts the constant metric scale and adaptive frame rate determined by IMU data. Furthermore, the corresponding distinctive image feature point matching approaches are employed for visual localizing, i.e., optical flow for fast motion mode; Canny Edge Detector & Harris Feature Point Detector & Sift Descriptor for slow motion mode. For superfast motion and abrupt rotation where images from camera are blurred and unusable, the Extended Kalman Filter is exploited to estimate IMU outputs and to derive the corresponding trajectory. Experimental results validate that our proposed method is effective and accurate in indoor positioning. Since our system is computationally efficient and in compact size, it's well suited for visually impaired people indoor navigation and wheelchaired people indoor localization. |
语种 | 英语 |
引用统计 | |
文献类型 | 会议论文 |
条目标识符 | http://ir.sia.cn/handle/173321/15368 |
专题 | 工业控制网络与系统研究室 |
作者单位 | 1.Key Laboratory of Networked Control Systems, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China 2.Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Konxville, TN, United States 3.Information and Control Engineering Faculty, Shenyang Jianzhu University, Shenyang, China 4.University of Chinese Academy of Sciences, Beijing, China |
推荐引用方式 GB/T 7714 | Zhang YL,Tan JD,Zeng ZM,et al. Monocular Camera and IMU Integration for Indoor Position Estimation[C]. Piscataway, NJ, USA:IEEE,2014:1198-1201. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Monocular Camera and(1299KB) | 会议论文 | 开放获取 | ODC PDDL | 浏览 下载 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论