SIA OpenIR  > 机器人学研究室
Speeded up Low Rank Online Metric Learning for Object Tracking
Cong Y(丛杨); Fan BJ(范保杰); Liu J(刘霁); Luo JB(罗杰波); Yu HB(于海斌)
作者部门机器人学研究室
关键词Online Learning Metric Learning Semi-supervised Learning Low Rank Object Tracking
发表期刊IEEE Transactions on Circuits and Systems for Video Technology
ISSN1051-8215
2015
卷号25期号:6页码:922-934
收录类别SCI ; EI
EI收录号20155201733939
WOS记录号WOS:000357616000003
产权排序1
资助机构NSFC (61105013,61375014,61203270); the foundation of Chinese Scholarship Council.
摘要Visual object tracking can be considered as an online procedure to adaptively measure the foreground object similarity itself. However, many previous works usually adopt a fixed metric or offline metric learning to evaluate this dynamic process; even with some online metric learning trackers, their models often suffer from overfitting issues. To overcome these deficiencies, we propose a self-supervised tracking method that incorporates adaptive metric learning and semi-supervised learning into a unified framework. For similarity measurement, we design a new online metric learning model via low rank constraint to handle overfitting. Specially, we employ the max norm instead of the trace norm used in our previous work. This not only maintains the low rank property to overcome overfitting, but also reduces the computational complexity from O(n3) to O(n2), such that the new model is more suitable for object tracking. Moreover, by associating the information from stored training templates with unlabeled testing samples, a bi-linear graph is defined accordingly to propagate the label of each sample. High-confidence samples are then collected for self-training the model and updating the templates concurrently to handle large-scale. Experiments on various benchmark datasets and comparisons to several stateof- the-art methods demonstrate the effectiveness and efficiency of our algorithm. 
语种英语
WOS标题词Science & Technology ; Technology
WOS类目Engineering, Electrical & Electronic
关键词[WOS]ROBUST VISUAL TRACKING ; MODEL ; SIMILARITY
WOS研究方向Engineering
引用统计
被引频次:6[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.sia.cn/handle/173321/15472
专题机器人学研究室
通讯作者Cong Y(丛杨)
作者单位1.State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
2.Department of Computer Science, University of Rochester, Rochester, NY, United States
3.College of Automation, Nanjing University of Posts and Telecommunications, Nanjing, China
4.Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
推荐引用方式
GB/T 7714
Cong Y,Fan BJ,Liu J,et al. Speeded up Low Rank Online Metric Learning for Object Tracking[J]. IEEE Transactions on Circuits and Systems for Video Technology,2015,25(6):922-934.
APA Cong Y,Fan BJ,Liu J,Luo JB,&Yu HB.(2015).Speeded up Low Rank Online Metric Learning for Object Tracking.IEEE Transactions on Circuits and Systems for Video Technology,25(6),922-934.
MLA Cong Y,et al."Speeded up Low Rank Online Metric Learning for Object Tracking".IEEE Transactions on Circuits and Systems for Video Technology 25.6(2015):922-934.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Speeded up Low Rank (6296KB)期刊论文出版稿开放获取ODC PDDL浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Cong Y(丛杨)]的文章
[Fan BJ(范保杰)]的文章
[Liu J(刘霁)]的文章
百度学术
百度学术中相似的文章
[Cong Y(丛杨)]的文章
[Fan BJ(范保杰)]的文章
[Liu J(刘霁)]的文章
必应学术
必应学术中相似的文章
[Cong Y(丛杨)]的文章
[Fan BJ(范保杰)]的文章
[Liu J(刘霁)]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Speeded up Low Rank Online Metric Learning for Object Tracking.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。