中国科学院沈阳自动化研究所机构知识库
Advanced  
SIA OpenIR  > 工业控制网络与系统研究室  > 期刊论文
题名: 云环境下基于神经网络和群搜索优化的资源分配机制
其他题名: Resource allocation scheme based on neural network and group search optimization in cloud environment
作者: 孙佳佳 ; 王兴伟 ; 高程希 ; 黄敏
作者部门: 工业控制网络与系统研究室
关键词: 云计算 ; 双向组合拍卖 ; 体验质量 ; 威望 ; BP神经网络 ; 群搜索优化
刊名: 软件学报
ISSN号: 1000-9825
出版日期: 2014
卷号: 25, 期号:8, 页码:1858-1873
收录类别: EI ; CSCD
产权排序: 1
摘要: 在云环境下,各种闲置资源可以通过池化形成资源池,进而利用虚拟化技术将资源池中的不同资源组合以服务的形式提供给用户使用,因此需要合理而有效的机制来分配资源。针对云环境下资源的特点,将经济学和智能方法相结合,提出了一种基于双向组合拍卖的智能资源分配机制。在该机制中,提出了基于体验质量(quality of experience,简称QoE)的威望系统,引入威望衰减系数和用户信誉度,降低拍卖中恶意行为造成的影响,为资源交易提供QoE支持。对拍卖中的竞价决策,综合考虑多种因素,提出了基于BP神经网络的竞标价格决策机制,不仅可以合理确定竞标价,而且使价格可以动态适应市场变化。最后,由于组合拍卖胜标确定问题是NP完全的,因此引入群搜索优化算法,以市场盈余和总体威望为优化目标,得到资源分配方案。仿真研究结果表明,该机制是可行和有效的。
英文摘要: In cloud environment, all kinds of idle resources can be pooled to establish a resource pool, and different kinds of resources can be combined as a service to the users through virtualization. Therefore, an effective scheme is necessary for managing and allocating the resources. In this paper, economic and intelligent methods are employed to form an intelligent resource allocation scheme based on double combinatorial auction with respect to the characteristics of resources in cloud environment. In the proposed scheme, a reputation system on the basis of quality of experience (QoE) is devised, and the reputation attenuation coefficient and the user credit degree are introduced to decrease the negative effects of malicious behaviors on resource auctions, providing QoE support to resource dealing. In order to determine bidding price rationally, a bidding price decision mechanism based on back propagation (BP) neural network is presented to comprehensively consider various influence factors to make price adapt to the fluctuating market. Finally, due to the fact that the problem of winner determination in combinatorial auction is NP-complete, a group search optimization algorithm is adopted to find the specific resource allocation solution with market surplus and total reputation optimized. Simulation studies are conducted to demonstrate the feasibility and effectiveness of the proposed scheme.
语种: 中文
Citation statistics:
内容类型: 期刊论文
URI标识: http://ir.sia.cn/handle/173321/15658
Appears in Collections:工业控制网络与系统研究室_期刊论文

Files in This Item: Download All
File Name/ File Size Content Type Version Access License
云环境下基于神经网络和群搜索优化的资源分配机制.pdf(554KB)----开放获取View Download
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[孙佳佳]'s Articles
[王兴伟]'s Articles
[高程希]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[孙佳佳]‘s Articles
[王兴伟]‘s Articles
[高程希]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
文件名: 云环境下基于神经网络和群搜索优化的资源分配机制.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2016  中国科学院沈阳自动化研究所 - Feedback
Powered by CSpace