SIA OpenIR  > 数字工厂研究室
一种基于双聚类的缺失数据填补方法
Alternative TitleNovel approach for missing data imitation based on biclustering
郝胜轩; 宋宏; 周晓锋
Department数字工厂研究室
Source Publication计算机应用研究
ISSN1001-3695
2015
Volume32Issue:3Pages:674-678
Indexed ByCSCD
CSCD IDCSCD:5357059
Contribution Rank1
Funding Organization国家重大科技专项
Keyword缺失数据填补 双聚类 双聚类数据填补 数据清洗
Abstract针对现实数据集的数据缺失问题,本文提出了一种基于双聚类的缺失数据填补新方法。首先,该算法利用双聚类簇内平均平方残值越小簇内数据相似性越高的这一特性,将缺失数据的填补问题转化为求解特定双聚类簇最小平均平方残值的问题,进而实现了数据集中缺失元素的预测。其次,该算法利用二次函数求解极小值的思想对包含有缺失数据的特定双聚类簇最小平均平方残值的问题进行求解,并进行了数学上的分析证明。最后,进行仿真验证,通过观察UCI数据集的实验结果可知,本文所提出的算法具有较高的填补准确性。
Other AbstractIn view of the problem of the lack of realistic data sets,this paper proposed a novel imputation method based on biclustering is proposed to solve the missing data problem. Firstly,the proposed method transformed the problem of imputing missing data into the problem of specific bicluster’minimum mean squared residue,which utilized the characteristics of the bicluster data that the smaller bicluster’s mean squared residue the higher similarity,thus the proposed method could predict the missing data in data sets. Secondly,it employed a solving minimization strategy of quadratic function to solve the problem of specific bicluster’s minimum mean squared residue,and gave the corresponding mathematical proof. Finally,it executed simulation and verification,and gave the results of UCI data sets show that the proposed imputation method has higher accuracy compared with other imputation methods.
Language中文
Citation statistics
Cited Times:2[CSCD]   [CSCD Record]
Document Type期刊论文
Identifierhttp://ir.sia.cn/handle/173321/15731
Collection数字工厂研究室
Affiliation1.中国科学院沈阳自动化研究所
2.中国科学院大学
Recommended Citation
GB/T 7714
郝胜轩,宋宏,周晓锋. 一种基于双聚类的缺失数据填补方法[J]. 计算机应用研究,2015,32(3):674-678.
APA 郝胜轩,宋宏,&周晓锋.(2015).一种基于双聚类的缺失数据填补方法.计算机应用研究,32(3),674-678.
MLA 郝胜轩,et al."一种基于双聚类的缺失数据填补方法".计算机应用研究 32.3(2015):674-678.
Files in This Item: Download All
File Name/Size DocType Version Access License
一种基于双聚类的缺失数据填补方法.pdf(613KB)期刊论文出版稿开放获取ODC PDDLView Download
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[郝胜轩]'s Articles
[宋宏]'s Articles
[周晓锋]'s Articles
Baidu academic
Similar articles in Baidu academic
[郝胜轩]'s Articles
[宋宏]'s Articles
[周晓锋]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[郝胜轩]'s Articles
[宋宏]'s Articles
[周晓锋]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: 一种基于双聚类的缺失数据填补方法.pdf
Format: Adobe PDF
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.