中国科学院沈阳自动化研究所机构知识库
Advanced  
SIA OpenIR  > 信息服务与智能控制技术研究室  > 期刊论文
题名: 基于稳定Hammerstein模型的在线软测量建模方法及应用
其他题名: On-line soft sensor based on stable Hammerstein model and its applications
作者: 丛秋梅; 苑明哲; 王宏
作者部门: 信息服务与智能控制技术研究室
关键词: Hammerstein模型 ; 在线建模 ; 软测量 ; 预测 ; 稳定学习 ; 污水处理过程 ; 稳定性
刊名: 化工学报
ISSN号: 0438-1157
出版日期: 2015
卷号: 66, 期号:4, 页码:1380-1387
收录类别: EI ; CSCD
产权排序: 1
项目资助者: 国家自然科学基金项目(61034008) ; 中国博士后科学基金项目(2013M530953) ; 中国科学院网络化控制系统重点实验室自主课题(WLHKZ2014005)~~
摘要: 针对复杂工业过程中由于存在未建模动态和不确定干扰,导致关键变量的软测量精度下降的问题,提出了一种基于稳定Hammerstein模型(H模型)的在线软测量建模方法。H模型的非线性增益采用带有时变稳定学习算法的小波神经网络模型,线性系统部分采用基于递推最小二乘的ARX模型,基于输入到状态稳定性理论证明了H模型辨识误差的有界性。其中小波神经网络具有表征强非线性的特性,稳定学习算法可抑制未建模动态和不确定干扰的影响,改善了模型的预测精度和自适应能力。以典型非线性系统和实际污水处理过程为例进行了仿真研究,结果表明,基于稳定H模型的软测量方法具有较高的在线软测量精度。
英文摘要: Aiming at the problem that the soft sensing precision of key variables deteriorates when unmodeled dynamics and uncertain disturbances exist in the complex industrial process, an on-line soft sensor based on stable Hammerstein model (H model) was presented. H model was composed of wavelet neural network with time-varying stable learning algorithm as nonlinear gain and ARX model with RLS (recursive least square) algorithm as linear part. The boundedness of identification error for H model was proved according to the Input-to-State Stability theory. Wavelet neural network could represent strong nonlinearity of the process, and the stable learning algorithm could restrain the influences of unmodeled dynamics and uncertain disturbances and improve prediction precision and self-adaptability. Simulations based on a nonlinear system and the wastewater treatment process showed that the soft sensing method presented in this paper possessed high prediction precision.
语种: 中文
Citation statistics:
内容类型: 期刊论文
URI标识: http://ir.sia.cn/handle/173321/16155
Appears in Collections:信息服务与智能控制技术研究室_期刊论文

Files in This Item: Download All
File Name/ File Size Content Type Version Access License
基于稳定Hammerstein模型的在线软测量建模方法及应用.pdf(698KB)期刊论文出版稿开放获取View Download

Recommended Citation:
丛秋梅,苑明哲,王宏. 基于稳定Hammerstein模型的在线软测量建模方法及应用[J]. 化工学报,2015,66(4):1380-1387.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[丛秋梅]'s Articles
[苑明哲]'s Articles
[王宏]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[丛秋梅]‘s Articles
[苑明哲]‘s Articles
[王宏]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
文件名: 基于稳定Hammerstein模型的在线软测量建模方法及应用.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2016  中国科学院沈阳自动化研究所 - Feedback
Powered by CSpace