SIA OpenIR  > 信息服务与智能控制技术研究室
基于稳定Hammerstein模型的在线软测量建模方法及应用
Alternative TitleOn-line soft sensor based on stable Hammerstein model and its applications
丛秋梅; 苑明哲; 王宏
Department信息服务与智能控制技术研究室
Source Publication化工学报
ISSN0438-1157
2015
Volume66Issue:4Pages:1380-1387
Indexed ByEI ; CSCD
EI Accession number20151800797562
CSCD IDCSCD:5393779
Contribution Rank1
Funding Organization国家自然科学基金项目(61034008) ; 中国博士后科学基金项目(2013M530953) ; 中国科学院网络化控制系统重点实验室自主课题(WLHKZ2014005)~~
KeywordHammerstein模型 在线建模 软测量 预测 稳定学习 污水处理过程 稳定性
Abstract针对复杂工业过程中由于存在未建模动态和不确定干扰,导致关键变量的软测量精度下降的问题,提出了一种基于稳定Hammerstein模型(H模型)的在线软测量建模方法。H模型的非线性增益采用带有时变稳定学习算法的小波神经网络模型,线性系统部分采用基于递推最小二乘的ARX模型,基于输入到状态稳定性理论证明了H模型辨识误差的有界性。其中小波神经网络具有表征强非线性的特性,稳定学习算法可抑制未建模动态和不确定干扰的影响,改善了模型的预测精度和自适应能力。以典型非线性系统和实际污水处理过程为例进行了仿真研究,结果表明,基于稳定H模型的软测量方法具有较高的在线软测量精度。
Other AbstractAiming at the problem that the soft sensing precision of key variables deteriorates when unmodeled dynamics and uncertain disturbances exist in the complex industrial process, an on-line soft sensor based on stable Hammerstein model (H model) was presented. H model was composed of wavelet neural network with time-varying stable learning algorithm as nonlinear gain and ARX model with RLS (recursive least square) algorithm as linear part. The boundedness of identification error for H model was proved according to the Input-to-State Stability theory. Wavelet neural network could represent strong nonlinearity of the process, and the stable learning algorithm could restrain the influences of unmodeled dynamics and uncertain disturbances and improve prediction precision and self-adaptability. Simulations based on a nonlinear system and the wastewater treatment process showed that the soft sensing method presented in this paper possessed high prediction precision.
Language中文
Citation statistics
Cited Times:2[CSCD]   [CSCD Record]
Document Type期刊论文
Identifierhttp://ir.sia.cn/handle/173321/16155
Collection信息服务与智能控制技术研究室
Affiliation1.辽宁石油化工大学信息与控制工程学院
2.中国科学院沈阳自动化研究所信息服务与智能控制技术研究室
3.中国科学院院重点实验室网络化控制系统重点实验室
4.沈阳中科博微自动化有限公司
Recommended Citation
GB/T 7714
丛秋梅,苑明哲,王宏. 基于稳定Hammerstein模型的在线软测量建模方法及应用[J]. 化工学报,2015,66(4):1380-1387.
APA 丛秋梅,苑明哲,&王宏.(2015).基于稳定Hammerstein模型的在线软测量建模方法及应用.化工学报,66(4),1380-1387.
MLA 丛秋梅,et al."基于稳定Hammerstein模型的在线软测量建模方法及应用".化工学报 66.4(2015):1380-1387.
Files in This Item: Download All
File Name/Size DocType Version Access License
基于稳定Hammerstein模型的在线(698KB)期刊论文出版稿开放获取ODC PDDLView Download
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[丛秋梅]'s Articles
[苑明哲]'s Articles
[王宏]'s Articles
Baidu academic
Similar articles in Baidu academic
[丛秋梅]'s Articles
[苑明哲]'s Articles
[王宏]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[丛秋梅]'s Articles
[苑明哲]'s Articles
[王宏]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: 基于稳定Hammerstein模型的在线软测量建模方法及应用.pdf
Format: Adobe PDF
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.