中国科学院沈阳自动化研究所机构知识库
Advanced  
SIA OpenIR  > 装备制造技术研究室  > 学位论文
题名: 空间对接分离试验台关键技术研究
其他题名: Key Technologies Research on Space Docking and Separation Test Platform
作者: 徐志刚
导师: 赵明扬
关键词: 空间对接分离 ; 失重运动模拟 ; 航天模拟器构型 ; 助推与同步制动 ; 运动控制与测量
学位专业: 机械电子工程
学位类别: 博士
答辩日期: 2015-05-26
授予单位: 中国科学院沈阳自动化研究所
学位授予地点: 中国科学院沈阳自动化研究所
作者部门: 装备制造技术研究室
中文摘要: 空间交会对接技术是建立空间站开展科学实验研究、实现宇航员和物资天地往返运输、维修替换空间站故障设备、甚至进行太空救援必须突破的关键技术,是进行空间探索必须首要解决的一个关键研究课题,同时也是航天技术中一项最复杂、规模最大和变量参数最多的技术。为验证空间对接航天器系统方案设计的正确性及对接机构设计的合理性,提高在轨运行的可靠性,在地面进行航天器空间对接分离模拟试验是空间对接技术研究的必要过程。“空间对接分离试验台”即是专门为我国空间对接技术研究而研制的地面试验保障系统。 本文通过分析两航天器空间对接动力学模型,得出对接动力学过程的关键条件,从而提出了地面对接试验台的设计原理及总体设计方案,并确定实现总体方案所必须突破的几项关键技术,即航天模拟器空间失重运动状态模拟技术、航天模拟器构型与运动物理属性优化匹配技术、高响应助推发动机模拟机构与同步制动技术及航天模拟器复合运动高精度测量控制技术。分别针对上述各关键技术提出了解决方案,进行了设计方法研究及实际试验检测,并进行了最后的综合对接分离试验,试验结果显示,论文所提出的空间对接分离试验台设计原理及方法可实现两航天器在轨对接动力学过程的高一致性模拟,为空间对接类航天机构的地面试验台设计及研制提供了一种有效解决方案。 针对航天模拟器空间失重运动状态模拟关键技术,研究了试验台5自由度航天模拟器及对接机构对接环失重运动状态模拟方法,提出了基于静压气浮原理的超大质量平面运动失重运动状态模拟方法,建立了大负载平面静压气浮轴承承载计算模型,分析了平面气浮轴承干扰力产生的因素并提出干扰力补偿措施;分别从材料选择、结构设计和载荷均布等方面说明了大负载平面气浮轴承的设计方法,对设计的平面气浮轴承进行了承载力及摩擦干扰力试验,试验结果满足要求。针对大负载航天模拟器姿态运动失重状态模拟方法,由于受质量体积等影响,提出了一种基于滚动轴承的高刚度低摩擦姿态模拟装置,可满足质量轻、刚度高、强度大和摩擦力矩小的要求,通过实验测试了模拟装置的摩擦干扰力矩,满足姿态失重运动模拟精度要求。同时针对对接机构对接环6自由度运动机构实时重力平衡的难点,提出了一种基于并联机构的轻质柔索连杆被动运动跟随及吊挂式重力平衡机构,实现了对接机构对接环高精度低扰动的运动跟随及重力实时平衡,分析了被动随动机构所带来的干扰力,并通过实验测量了重力平衡装置的平衡精度,满足试验要求。 针对航天模拟器构型及运动物理属性优化匹配技术,分析了空间对接类航天 模拟器整体构型的原理,在此基础上分别对构成航天模拟器运动物理属性匹配模拟件的主梁结构及质量分布构型优化方法进行了研究,并采用所提出的优化设计方法对试验台特定主被动航天模拟器给出了优化算例,优化结果显示航天模拟器质量惯量匹配一致性满足试验要求。首先通过有限元法对不同构型的主梁刚度进行比较,确定了圆环形截面的主梁结构形式;其次,阐述了正交杠铃式模拟件的构建原理,并通过模糊多目标遗传算法对模拟件结构参数进行了优化,实现了航天器运动物理属性(质量、惯量、质心位置)的最优化匹配;最后,对姿态变化过程中惯量误差进行了建模并仿真。仿真结果表明:主被动端航天模拟器惯量模拟最大误差为2.6811%,小于试验要求5%惯量误差,实现了高一致性的运动物理属性匹配。 针对地面试验系统中主被动航天模拟器大质量大惯量的助推及制动技术,提出一种高动态响应对接助推模拟机构,分析了助推系统的响应时间和助推运动过程;设计了航天模拟器各移动和转动自由度制动机构,阐述了主动端和被动端的同步制动原理,并建立了同步制动的数学模型对同步制动精度进行分析,试验表明助推与制动机构满足地面对接试验。 针对航天模拟器复合运动高精度测量控制技术,研究了两航天模拟器地面对接试验高精度测量控制方法。提出了一种基于3 机构的平面复合运动测量传感器,阐述了其设计原理,建立了传感器测量模型,并采用蒙特卡罗法对试验台误差进行精度分配,实际试验测试显示该传感器能实现航天模拟器复合平面运动的高精度测量,为平面复合运动提供了一种有效测量手段;搭建了试验台控制系统,提出了两航天模拟器对接初始条件高精度设定的滑膜变结构控制方法及运行轨迹规划方法,实现了对接初始条件的高精度控制。 在空间对接分离试验台上对真实空间对接机构进行了各种工况的对接分离试验,对试验台总体性能及各关键技术进行了验证,并将试验数据与航天器在轨真实对接分离过程数据做对比,验证了试验台试验结果的有效性及试验台设计原理及方法的正确性。
英文摘要: The rendezvous and docking technique has a great significance to aerospace science including building and maintaining the space station, earth-to-orbit transportation system, space research and rescue. This technique which should be one of the first core problems for universe exploring is very complex due to the large quantity of parameters. To validate the system scheme and the structure of the docking mechanism, and to improve the on orbit reliability of the spacecrafts, it is a necessity to conduct a simulation test. So an experiment platform is developed as a ground support equipment specially for our country’s space docking technique research. By building a kinetic model of the spacecrafts and analyzing the key conditions of the docking process, the design principle and general system strategy of the simulation experiment platform are proposed. To realize the presented scheme, there are several key techniques to overcome. The first one is the zero-gravity simulation technique, the second is the way of configuration and dynamics matching, the next is high response booster engine simulation and synchronized braking technique, and the last is the means of high-precision measurement and control for compound motion. To make breakthroughs in these techniques above, several solutions are shown respectively. Method study and actual test are made, and then the docking and separation experiment are conducted. These relative test results show that the design principle and methods proposed by this paper could simulate the dynamic docking and separation process in orbit with high reliability. And thus an effective project to the design and development of this experiment platform is put forward. Aiming at the zero-gravity simulation technique, this paper made a research on the weight loss method of the docking mechanism and the 5-DOF space simulator. This weightless simulation method using large-mass platform is based on static pressure air-floating technique. And then a heavy load calculation model of the air bearings is built. On the basis of these above, the interference is analyzed and the corresponding compensation method is offered. This paper introduced the design method of the large-load air bearings from three aspects including the material selection, structure design, and the load distribution. The load experiment and the friction disturbance test are conducted on the air bearings, and the results meet the requirements. To solve the problems in large-mass zero-gravity technique, considering the mass and size required, antifriction bearings are used to build a pose simulation equipment with high stiffness and low friction, which would meet the requirements of little mass, high stiffness and strength, and small friction moment. The friction moment is tested, and the accuracy of the simulative weightless movement meets the demands. To solve the problem of high-precision real-time weight balancing of the docking ring with 6 DOFs, a passive following gravitational equilibrium mechanism using light soft rope based on parallel mechanism is designed on the docking joints. The disturbance from this mechanism is analyzed, and the equilibrium precision meets the requirements. As to the method of configuration and dynamics matching, this paper analyzed the general structure design principle. On the basis of this analysis, the structure of the simulator’s main girder and the optimization method of the mass distribution are studied. Then an optimization example for these active and passive spacecraft simulators is presented, and the results showed that the mass and inertia meet the demands. The main girder with ring section is chosen by this paper after analyzing with FEM (finite element methods). Then the design principle of the orthogonal barbell-type simulator is introduced. To realize the optimal matching with the physical properties (mass, inertia, and mass center), the fuzzy genetic algorithm is used. The dynamic model of the inertia error during posture change is built and simulated. And the simulation results imply that the inertia error is within 2.6811%, which is less than the required 5%, thus the high-precision physical properties matching could be realized. Considering the large mass and inertia boosting and braking technique for the space simulators, several methods are put forward. A high response boost simulation mechanism is built and the response time and the boosting process are analyzed. Besides, the braking mechanism of the plane movement and rotation is designed. The synchronized braking principle is proposed and the corresponding mathematical model is established and and the precision analysis is conducted. The test results show that the boosting and the braking mechanism meet the design requirements of the platform. In view of the high-precision measurement and control technique of the compound motion, this paper mainly studied the relative methods. A plane combined motion sensor based on the 3α mechanism is proposed and the design principle is introduced. The measurement model is built and the Monte Carlo method is used for accuracy distribution. The actual test showed that this could be an effective method because this sensor could realize the required high-precision measurement. With this control system, in which the sliding mode control method with dynamic structure and the trajectory plan method are combined, the high-precision control of the initial docking condition is realized. Lots of experiments under different conditions are conducted to validate the overall performance and the key techniques of this platform. These data are compared with the actual ones of the spacecrafts in orbit, and the results show that this docking and separation simulation platform is effective and the design principle is reasonable.
语种: 中文
产权排序: 1
内容类型: 学位论文
URI标识: http://ir.sia.cn/handle/173321/16766
Appears in Collections:装备制造技术研究室_学位论文

Files in This Item:
File Name/ File Size Content Type Version Access License
空间对接分离试验台关键技术研究.pdf(125KB)----限制开放 联系获取全文
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[徐志刚]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[徐志刚]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2016  中国科学院沈阳自动化研究所 - Feedback
Powered by CSpace