SIA OpenIR  > 机器人学研究室
基于EFM的纳米材料电学性质检测方法及实现技术研究
Alternative TitleStudy on nanomaterial electrical properties detection method and realization technology based on EFM
赵增旭1,2
Department机器人学研究室
Thesis Advisor刘杰 ; 董再励
ClassificationTB383
Keyword静电力显微镜 碳纳米管 导电性 电荷 半导体类型
Call NumberTB383/Z48/2015
Pages111页
Degree Discipline机械电子工程
Degree Name博士
2015-05-27
Degree Grantor中国科学院沈阳自动化研究所
Place of Conferral沈阳
Abstract纳米技术主要研究纳米尺度表征和检测、纳米材料、纳米器件与系统制造,是新一代科技革命的领军领域,涉及物理、化学、生物等诸多学科。 纳米技术的产生,推动了微电子技术的创新性发展。例如,代表性的纳米材料-碳纳米管(CNT)已被广泛的被研究应用于微纳电子器件。CNT依其手性不同而具有金属性和半导体特性,在实际应用中,需要根据CNT的电特性来构建纳米器件的组成部分。因此,发展可以在线检测CNT材料电特性的技术和构建纳米器件、系统具有重要的科学意义和应用价值。 扫描探针显微镜是一种具有广泛适应性的纳米尺度观测工具,是纳米技术发展的基础,利用扫描探针显微镜既可以获得样品形貌,也可以观测样品的力学、电学等特性。针对CNT电特性的在线检测需求,本论文以静电力显微镜(EFM)为基础,开展了CNT等纳米材料电特性的在线检测理论方法和实验技术研究,并且研究构建了一套实验检测系统。 本论文主要进行了以下几个方面的研究工作。 (1) 在系统研究分析了EFM工作原理和样品电特性检测机理基础上,开展了CNT电特性检测、辨识理论方法研究,构建了以交流EFM为基础的包含信号检测、成像,扫描控制等功能的实验系统。 (2) 基于CNT电特性检测、辨识理论方法,开展了不同属性CNT对交流电场作用的介电响应分析研究,构建了基于电场力观测量的电特性辨识方法。在实验系统上,系统开展了CNT电特性测试实验技术研究。实验表明,基于电场力观测量的电特性辨识方法可以有效实现单壁CNT金属性和半导体性的在线辨识,并且给出CNT样品的电特性差异分布和百分比。 (3)基于上述测试方法,研究运用栅极偏压技术,开展了ZnO,CuO等其它纳米线材料的电特性检测方法研究,实现了ZnO,CuO纳米线的N/P型半导体特性的在线检测,为纳米线材料的电特性检测分析,提供了一套完整的检测方法和实现技术。 (4)为了更好的理解纳米线内部电荷运动,以发展更广泛的微纳器件应用和设计创造新型电子器件,研究了纳米线电荷操作,并且对其进行了实验验证。在此基础上,进一步研究变形对CNT内电荷的影响,利用AFM的操作功能实现CNT变形,然后通过加电操作和EFM检测,研究电荷在CNT中的移动,与此同时研究了CNT加电与加电时间的关系。 本论文开展的基于EFM平台的纳米线电学性质的检测为EFM在纳米检测中的应用打开了新的领域,为纳米线材料的检测提供新的技术和方法,为以后应用于纳米器件、微电子器件提供了有力的检测保障。电荷操作的研究有利于进一步研究CNT的电学特性,为其应用于微电子器件提供了更多的方法手段。
Other AbstractNanotechnology mainly researches on characterization and detection of nanoscale, nano materials,and nano devices and system fabrication, which is a leader field of the new generation of scientific and technological revolution, involving physics, chemistry, biology and other disciplines. Nanotechnology promoted the innovative development of microelectronic technology. For example, the representative nanomaterials carbon nanotubes (CNT) has been widely used in micro-nano electronic devices. CNTs have metallic and semiconducting properties according to their chirality, in practical applications, fabrication of nanodevice should be according to the electrical characteristics of CNT. Therefore, the research on developping of online assessment technology of CNT electrical characteristics, building nanoscale devices and system has important scientific significance and application value. Scanning probe microscopy is a broad adaptability nanoscale observation tools, which is the basis for the development of nanotechnology. It not only can get the sample morphology, but also can observe mechanical, electrical and other properties. For the demand of on-line monitoring of electrical characteristics of CNT, this paper researched on theoretical methods and experimental techniques about online testing of electrical properties of CNT and other nanowire based on electrostatic force microscopy (EFM), it also set up a basic detection system. In this thesis, research work inicluding the following aspects. (1) Based on the study of the principle of and electrical characteristics detection mechanism, studied on the theory and method of CNT property detection and identification, and constructed the experimental system based on ACEFM, which is including signal detection, imaging, controlling and other fuctions. (2) Based on the theory and method of CNT electrical property detection and identification, carried out the research and the analysis of different dielectric response to the alternating electric field of CNT with different electrical property. Carried out the study of experimental technology of CNT electrical characteristics detection. Experiments show that the electric force identification method can effectively realize online identification of metallic and semiconducting single-walled carbon nanotubes, and gives the distribution and percentage of CNT sample according to the difference of electrical characteristics. (3) Based on the above test methods, studied on using gate bias technology, carried out the research on electrical properties detection method of ZnO, CuO nanowires and other materials, realizing the online testing of N / P-type semiconductor properties of ZnO, CuO nanowires, which provide a complete set of testing methods and implementation techniques for the electrical characteristics detection and analysis of nanowire material. (4) In order to better understand the movement of electric charge inside the nanowires and develop a wider range of applications in micro-nano device and designed new electronic devices, studied nanowires charge operation, and did experiment for verification. Besides, further study has been done on the influence of deformation on the CNT charge. Use the operating functions of AFM system to realized CNT deformation, and by adding voltage and EFM testing, study the charge transfer in the CNT. Meanwhile researched on the time influence. In this paper, the study of electrical properties of nano material based on EFM provides new platform for the application in the nano detecion. Also provides new methods and technology for nano material detecion. This method provides a strong guarantee for the application of nano wires on nano devices and nano electronics devices. The study of charge operation does better for the future study of CNT and also provide additional method for the application on the microelectronics devices.
Language中文
Contribution Rank1
Document Type学位论文
Identifierhttp://ir.sia.cn/handle/173321/16791
Collection机器人学研究室
Affiliation1.中国科学院沈阳自动化研究所
2.中国科学院大学
Recommended Citation
GB/T 7714
赵增旭. 基于EFM的纳米材料电学性质检测方法及实现技术研究[D]. 沈阳. 中国科学院沈阳自动化研究所,2015.
Files in This Item:
File Name/Size DocType Version Access License
基于EFM的纳米材料电学性质检测方法及实(4753KB) 开放获取CC BYApplication Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[赵增旭]'s Articles
Baidu academic
Similar articles in Baidu academic
[赵增旭]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[赵增旭]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.