SIA OpenIR  > 机器人学研究室
基于微流控芯片的胰岛素自动化检测系统
其他题名Automated Insulin Detection System Based on Microfluidic Chip
姚萍1,2
导师童兆宏 ; 董再励
分类号O657
关键词微流控芯片 免疫分析 化学发光 胰岛素检测
索取号O657/Y35/2015
页数98页
学位专业模式识别与智能系统
学位名称博士
2015-05-22
学位授予单位中国科学院沈阳自动化研究所
学位授予地点沈阳
作者部门机器人学研究室
摘要糖尿病已经成为世界各国的公共健康危机,血清中胰岛素的定量检测可以为糖尿病的早期诊断、预防和治疗提供重要的科学依据。目前血清胰岛素浓度的定量检测所使用的大型生化免疫分析仪,由于设备成本高、测试过程繁琐、专业性强等问题,难以满足大规模的糖尿病早期诊断和科学研究需求。近年来发展起来的微流控芯片(Microfluidic chip)技术,具有试剂量少、分析速度快、灵敏度高、成本低等优点,在生物医药领域得到了广泛的应用,是具有广阔发展前景的新兴技术。因而,研究基于微流控芯片的微量胰岛素自动化检测技术,对开展大规模人群的糖尿病早期诊断、预防、治疗和科学研究具有重要意义。本论文结合免疫学理论和自动化方法,以微量、快速、低成本的自动化胰岛素检测系统为目标,开展了基于微流控芯片的胰岛素化学发光免疫检测的相关理论方法和系统实现技术的研究工作,主要包括:(1) 在分析直接化学发光免疫检测的基本原理基础上,开展了以磁性微球为固相化载体,羧基修饰载体与胰岛素抗体的共价偶联方法研究,羧基修饰载体与胰岛素抗体的偶联率测定方法研究,完成了高偶联率的实验研究;系统地研究了基于免疫磁性微球的双抗体夹心结构构成方法;分析了直接化学发光检测法的基本原理和常用于生物医学检测的化学发光体系,设计了适用于微流控芯片的基于吖啶酯化学发光体系的胰岛素浓度检测方法。(2) 系统分析了微流控芯片的工作原理,开展了微泵和微混合器等微流控芯片关键功能单元实现方法研究,完成了基于玻璃-PDMS材料的专用微流控芯片系统设计和性能测试实验。并采用有限元仿真方法,研究分析了微流体驱动和混合的流体-固体耦合运动模型,解决了微量流体驱动控制参数设置和样品混合/反应速度问题,实现了多通道参数可调微泵设计和高效率的微混合器设计。(3) 面向微量、高灵敏度、自动化的胰岛素浓度定量检测需求,基于上述微流控芯片功能单元的研究,设计并构建了具有多通道阀泵与混合器结构的微流控集成芯片。开展了相应工艺设计和制作测试方法研究。在优化实验基础上,实现了可多通道试剂定量分时调控,高效溶液混合的微流控集成芯片。(4) 依据胰岛素浓度的直接化学发光检测原理,设计了检测技术流程,研究构建了由微流控芯片、通道阀泵控制系统、流程控制系统、光电信号检测系统、以及相应机构集成的胰岛素自动化检测系统。并通过实验研究,确定了该检测系统的工作调控参数和试剂配方,实现了待测样品用量不超过20 μL,用时小于10分钟的胰岛素浓度检测。(5) 依据胰岛素免疫学检测的评价方法,开展了基于微流控芯片的胰岛素自动化检测系统的有效性评价实验研究。开展了基于标准胰岛素样品和临床血清样品的检测重复性、回收率和干扰率等性能评估研究。实验结果表明,该系统的胰岛素检测下限达到10-12 M,检测线性范围为1.5×10-12 M ~ 3.91×10-10 M,重复性、回收率和干扰率等指标均满足临床医学要求。本文所开展的基于微流控芯片的胰岛素自动化检测系统研究成果,实现了微量、高灵敏度、快速的胰岛素浓度定量检测,具有实际应用于检测临床血清样品的能力,为糖尿病的规模化早期诊断和临床科学研究提供了具有创新性的可行技术途径。
其他摘要Diabetes has become the world's public health crisis, and quantitative detection of serum insulin provides an important scientific basis for early diabetes diagnosis, prevention and treatment. Currently large biochemical immune analyzers are used for quantitative detection of serum insulin concentration, due to the high cost of equipment, the testing process cumbersome, highly professional and other issues, which is difficult to meet the needs of the general population of early diabetes diagnosis and scientific research. In recent years, the developing microfluidic chip technology with less reagent consumption, fast analysis speed, high sensitivity, low cost and other advantages, has been widely used in the field of biological medicine, which is a new technology with extremely broad prospects for development. Therefore, the research of automated insulin detection technology based on microfluidic chip is of great significance to carry out the general population of early diabetes diagnosis, prevention, treatment and scientific research. This dissertation combines the immunology theory and automated methods, as the goal of automated insulin detection system with microscale, fast, and low-cost, which does the research into insulin chemiluminescence immunoassay detection system based on microfluidic chip and the relevant theoretical approaches, mainly including:(1) Based on the basic principle of chemiluminescence immunoassay, using magnetic microspheres as immobilized carrier, the research of covalent coupling method and determination method of binding efficiency between carboxyl-modified carrier and insulin antibody is carried out, and the experimental study with high binding efficiency is completed; double antibody sandwich structure based on immunomagnetic microspheres is systematically studied; the basic principle of chemiluminescence detection and chemiluminescence systems commonly used in biomedical detection is analyzed, and the detection method is designed for insulin concentration based on acridine ester chemiluminescence system, which is applicable to microfluidic chip.(2) Analyzing the principle of microfluidic chip systematically, the study on the key function of microfluidic chip unit including micropump and micromixer is carried out, and a special microfluidic chip system design and performance test based on glass-PDMS material are completed. Using the finite element simulation method, the microfluidic driving and mixing of the fluid-solid coupling motion model are analyzed, and the problems of the parameter setting of microfluidic driving control and the sample mixing/reaction velocity are solved, which achieves the design of multi-channel parameter adjustable micropump and high efficiency micromixer.(3) To meet requests of quantitative detection of insulin concentration with microscale, high sensitivity, and automation, based on the above mentioned study of the microfluidic chip function unit, an integrated microfluidic chip with multi-channel, microvalve, micropump, and micromixer is designed and constructed. The research on the process of design, fabrication and test method is completed. After optimized experiments, an integrated microfluidic chip has been accomplished, which consists of multi-channel, regulating reagent quantitative and mixing at high efficiency.(4) According to the principle of direct chemiluminescence detection of insulin concentration, the process of detection technology is designed, and an automated insulin detection system is built up using integrating microfluidic chip, channel/valve/pump control system, process control system, photoelectric signal detection system, and corresponding mechanism. Through the experimental study, regulation parameters and reagent formula of the detection system are determined using the sample amount no more than 20 μL and time consumption less than 10 minutes.(5) According to the evaluation of insulin immunological detection methods, the research of evaluation of the effectiveness of the experimental insulin automatic detection system based on microfluidic chip is achieved. The research on evaluation standard of insulin samples and clinical serum samples is completed on detection repeatability, recovery rate and interference rate. The experimental results show that the insulin detection limit of the system is 10-12 M, the linear range of detection is 1.5×10-12 M ~ 3.91×10-10 M; the detection repeatability, recovery rate and interference rate and other indicators are meet the requirements of clinical medicine. In this dissertation, the automated insulin detection system based on microfluidic chip has achieved the quantitative detection of insulin concentrations with microscale, high sensitivity, and fast analysis speed, which has the capability to practical application in detection of clinical serum samples, providing a feasible and innovative technical approach for the study of early diagnosis and clinical research on diabetes.
语种中文
产权排序1
文献类型学位论文
条目标识符http://ir.sia.cn/handle/173321/16796
专题机器人学研究室
作者单位1.中国科学院沈阳自动化研究所
2.中国科学院大学
推荐引用方式
GB/T 7714
姚萍. 基于微流控芯片的胰岛素自动化检测系统[D]. 沈阳. 中国科学院沈阳自动化研究所,2015.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
基于微流控芯片的胰岛素自动化检测系统.p(5513KB) 开放获取CC BY请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[姚萍]的文章
百度学术
百度学术中相似的文章
[姚萍]的文章
必应学术
必应学术中相似的文章
[姚萍]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。