中国科学院沈阳自动化研究所机构知识库
Advanced  
SIA OpenIR  > 机器人学研究室  > 期刊论文
题名: 基于结构化的加权联合特征表观模型的目标跟踪方法
其他题名: Object Tracking Method Based on Structural Appearance Model with Weighted Associated Features
作者: 杨大为; 丛杨; 唐延东
作者部门: 机器人学研究室
关键词: 表观模型 ; 目标跟踪 ; 朴素贝叶斯 ; 颜色特征 ; 纹理特征
刊名: 信息与控制
ISSN号: 1002-0411
出版日期: 2015
卷号: 44, 期号:3, 页码:372-378, 384
收录类别: CSCD
产权排序: 1
项目资助者: 国家自然科学基金面上项目(NSFC 61375014)
摘要: 为了解决单目标跟踪中的光照变化、部分遮挡问题,提出了一种结构化的加权联合特征表观模型.该模型将被跟踪的目标图像划分成若干图像块,在每个图像块内计算其颜色特征和纹理特征,将这些特征加权形成特征向量作为目标的表观模型.以该模型为基础,利用贝叶斯理论,提出一种跟踪方法.实验结果表明了该方法的有效性.
英文摘要: A structural appearance model with weighted associated features is proposed to deal with illumination variation and partial occlusion questions in single object tracking. The tracked object image is divided into small image blocks. Thereafter,the color features and textural features are calculated within each block. Next,these features are weighted and a vector is composed,which is presumed the appearance model of the tracked object. Subsequently, through the application of Bayes' theorem,a tracking method based on the appearance model is proposed. Finally,the effectiveness of the proposed tracking method is demonstrated through experimental results.
语种: 中文
Citation statistics:
内容类型: 期刊论文
URI标识: http://ir.sia.cn/handle/173321/16846
Appears in Collections:机器人学研究室_期刊论文

Files in This Item: Download All
File Name/ File Size Content Type Version Access License
基于结构化的加权联合特征表观模型的目标跟踪方法.pdf(4859KB)期刊论文出版稿开放获取View Download
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[杨大为]'s Articles
[丛杨]'s Articles
[唐延东]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[杨大为]‘s Articles
[丛杨]‘s Articles
[唐延东]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
文件名: 基于结构化的加权联合特征表观模型的目标跟踪方法.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2016  中国科学院沈阳自动化研究所 - Feedback
Powered by CSpace