中国科学院沈阳自动化研究所机构知识库
Advanced  
SIA OpenIR  > 工业控制网络与系统研究室  > 期刊论文
题名: 晶圆表面微米级缺陷检测
其他题名: Micron defect inspection for wafer surface
作者: 戴敬; 肖朋; 杨志家; 马继开
作者部门: 工业控制网络与系统研究室
关键词: 晶圆缺陷检测 ; 差影 ; 双模版匹配 ; 多重中值滤波 ; 鲁棒性
刊名: 计算机工程与设计
ISSN号: 1000-7024
出版日期: 2015
卷号: 36, 期号:6, 页码:1671-1675
产权排序: 2
项目资助者: 国家863高技术研究发展计划基金项目(2011AA040102) ; 国家自然科学基金项目(61233007)
摘要: 为降低晶圆缺陷对半导体制造的影响,在基于改进的多重中值滤波算法的基础上,以差影法为基本原理,采用归一化互相关的模版匹配方法实现晶圆表面缺陷检测。改进的多重中值滤波算法有效实现噪声点与非噪声点的分辨,归一化模版匹配算法对光照具有很好的鲁棒性。对大量的晶粒进行实验,实验结果表明,该方法可有效检测出晶圆表面的缺陷,精度达到15μm左右,所提检测算法在实际的应用中可代替人工,快速、准确地实现晶圆的缺陷检测。
英文摘要: To reduce the influence of wafer defects on semiconductor manufacturing, based on the improved multiple median filter algorithm, a method of detecting wafer surface defect was proposed. The image subtraction and the NCC(normalized cross correlation) pattern matching were adopted. The improved multiple median filter distinguished noise and non-noise points effective, NCC algorithm was robust against change in illumination. Experiences of wafer die verify that the proposed methods can detect wafer surface defect effective, and the precision reaches 15μm approximately. The defect detection algorithm can replace human work and detect wafer defect quickly and accurately in the actual application.
语种: 中文
内容类型: 期刊论文
URI标识: http://ir.sia.cn/handle/173321/16907
Appears in Collections:工业控制网络与系统研究室_期刊论文

Files in This Item:
File Name/ File Size Content Type Version Access License
晶圆表面微米级缺陷检测.pdf(556KB)期刊论文出版稿开放获取View 联系获取全文
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[戴敬]'s Articles
[肖朋]'s Articles
[杨志家]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[戴敬]‘s Articles
[肖朋]‘s Articles
[杨志家]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
文件名: 晶圆表面微米级缺陷检测.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2016  中国科学院沈阳自动化研究所 - Feedback
Powered by CSpace