SIA OpenIR  > 光电信息技术研究室
 结合特征定位噪声表征的单应矩阵精确鲁棒估计 Alternative Title Accuracy and robust estimation of homography based on feature point location noise 赵春阳; 赵怀慈 Department 光电信息技术研究室 Source Publication 光学精密工程 ISSN 1004-924X 2015 Volume 23Issue:8Pages:2357-2368 Indexed By EI ; CSCD EI Accession number 20153901301650 CSCD ID CSCD:5511263 Contribution Rank 1 Funding Organization 国家973重点基础研究发展规划资助项目 ; 中国科学院光电信息处理重点实验室开放基金资助项目(No.OEIP-O-201203) Keyword 单应矩阵估计 特征定位噪声 协方差加权 随机采样一致(Ransac) Levenberg-marquardt Abstract 针对基于特征匹配的单应矩阵估计方法的特征定位噪声的各向异性非同分布对其精度和鲁棒性的影响,提出了一种结合特征定位噪声表征的单应矩阵估计方法。该方法采用协方差矩阵来表征特征点定位噪声;基于协方差矩阵加权采样一致性(CWSAC)的内点检验方法来提高单应矩阵估计的鲁棒性。最后,提出一种单应矩阵高精度估计算法——协方差加权Levenberg-Marquardt(CW L-M)法。该方法结合协方差矩阵重新定义优化目标函数,提高了单应矩阵的估计精度。基于仿真数据和真实图像的实验表明,在相同定位噪声和内点比例条件下,本文算法的估计精度显著优于RANSAC(RANdom SAmple Consensus)、LMedS(Least Median of Squares),PROSAC(PROgressive SAmple Consensus)、M-SAC(M-estimator SAmple Consensus)和MLESAC(Maximum Likelihood SAmple Consensus)等传统算法,投影均方误差比次优方法降低了3%~21%。另外,本文方法对定位噪声和内点比例变化均具有较好的鲁棒性。 Other Abstract The feature location noise from feature-based homography estimation methods is isotropic and non-identical distribution, and it effects the accuracy and robustness of homography estimation methods significantly in practical applications. Therefore, this paper proposes a high accuracy and robust homography estimation method based on location noise of feature points. The method uses a covariance matrix to characterize the location noise of feature points and takes an inner point verification method based on Covariance matrix Weight SAmple Consensus (CWSAC) to improve the robustness of the homography estimation method. Finally, a high accuracy homography matrix refined method, Covariance matrix Weight Levenberg-Marquardt (CW L-M) is proposed by combining covariance matrix with Levenberg-Marquardt method, and it improves the estimation accuracy of homography matrix by redefining a optimized object function. The experiments on simulation data and real images show that as compared with state-of-the-art methods, such as RANSAC (RANdom SAmple Consensus), LMedS (Least Median of Squares), PROSAC (PROgressive SAmple Consensus), M-SAC (M-estimator SAmple Consensus) and MLESAC (Maximum Likelihood SAmple Consensus), the accuracy of homography estimation has improved greatly and the root mean squares of reproject error has reduced 3%-21% than that of the subprime method in the same location noise and the same inlier proportion. In addition, the proposed method is robust to the noise level and inlier proportion changing. Language 中文 Citation statistics Cited Times:3[CSCD]   [CSCD Record] Document Type 期刊论文 Identifier http://ir.sia.cn/handle/173321/16969 Collection 光电信息技术研究室 Affiliation 1.中国科学院沈阳自动化研究所2.中国科学院大学3.中国科学院光电信息处理重点实验室 Recommended CitationGB/T 7714 赵春阳,赵怀慈. 结合特征定位噪声表征的单应矩阵精确鲁棒估计[J]. 光学精密工程,2015,23(8):2357-2368. APA 赵春阳,&赵怀慈.(2015).结合特征定位噪声表征的单应矩阵精确鲁棒估计.光学精密工程,23(8),2357-2368. MLA 赵春阳,et al."结合特征定位噪声表征的单应矩阵精确鲁棒估计".光学精密工程 23.8(2015):2357-2368.