SIA OpenIR  > 智能检测与装备研究室
一种基于自适应转移概率矩阵的交互多模型跟踪方法
Alternative TitleInteractive multi-model tracking method based on self-adaptive transition probability matrix
毕欣; 杜劲松; 王伟; 高洁; 田星; 赵越南; 赵乾; 丛日刚; 仝盼盼; 李想; 张清石; 徐洪庆; 高扬
Department智能检测与装备研究室
Rights Holder中国科学院沈阳自动化研究所
Patent Agent沈阳科苑专利商标代理有限公司 21002
Country中国
Subtype发明
Status有权
Abstract本发明涉及一种基于自适应转移概率矩阵的交互多模型跟踪方法,包括以下步骤:首先计算状态估计的交互作用,然后通过卡尔曼滤波或粒子滤波,获得各模型的输出,进而更新模型概率,输出结果,根据模型概率的变化,自适应调节状态转移概率,用于下一时刻跟踪。本发明避免模型的转移概率是先验给定,根据模型概率的变化,自适应调节状态转移概率;本发明可以对目标进行稳定的跟踪,获取目标的准确轨迹,判断目标的运动趋势;本发明提升雷达的跟踪性能。
Other AbstractThe invention relates to an interactive multi-model tracking method based on a self-adaptive transition probability matrix. The interactive multi-model tracking method comprises the steps of calculating interaction effect of state estimation, acquiring output of each model through Kalman filtering or particle filtering, updating model probability, outputting results, and regulating state transition probability in a self-adaptive manner according to variation of the model probability for tracking at the next moment. The interactive multi-model tracking method avoids the problem that the transition probability of models is priori given, and regulates the state transition probability in a self-adaptive manner according to variation of the model probability; the interactive multi-model tracking method can track a target stably, acquires an accurate trajectory of the target, and judges the movement tendency of the target, and the interactive multi-model tracking method improves the tracking performance of a radar.
PCT Attributes
Application Date2014-11-30
2015-09-02
Date Available2017-09-26
Application NumberCN201410715327.7
Open (Notice) NumberCN104880707A
Language中文
Contribution Rank1
Document Type专利
Identifierhttp://ir.sia.cn/handle/173321/17016
Collection智能检测与装备研究室
Affiliation中国科学院沈阳自动化研究所
Recommended Citation
GB/T 7714
毕欣,杜劲松,王伟,等. 一种基于自适应转移概率矩阵的交互多模型跟踪方法[P]. 2015-09-02.
Files in This Item: Download All
File Name/Size DocType Version Access License
CN201410715327.7.pdf(3271KB)专利 开放获取CC BY-NC-SAView Download
CN201410715327.7授权.p(680KB)专利 开放获取CC BY-NC-SAView Download
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[毕欣]'s Articles
[杜劲松]'s Articles
[王伟]'s Articles
Baidu academic
Similar articles in Baidu academic
[毕欣]'s Articles
[杜劲松]'s Articles
[王伟]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[毕欣]'s Articles
[杜劲松]'s Articles
[王伟]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: CN201410715327.7.pdf
Format: Adobe PDF
File name: CN201410715327.7授权.pdf
Format: Adobe PDF
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.