SIA OpenIR  > 机器人学研究室
Alternative TitleDynamics-control unified model of a snakelike robot based on differential geometry
郭宪; 马书根; 李斌; 王明辉; 王越超
Source Publication中国科学:信息科学
Indexed ByCSCD
Contribution Rank1
Funding Organization国家自然科学基金(批准号:61333016)资助项目
Keyword蛇形机器人 非完整约束 微分几何 动力学与控制 纤维丛
Other AbstractWhereas the inputs for a snakelike robot are torques, the dynamics system is a nonlinear control system. With increasing modules in a snakelike robot, its nonlinear control system becomes complex and inconvenient for regulation and control. In this paper, the differential geometry method is used, and the Euler-Lagrange equations are extended to equations under any base. Thus, the dynamics equations are reduced to the standard affine control system, and the dynamics-control unified model is derived; this simplifies the regulation and control of the snakelike robot. Based on the unified model, a partial feedback linearization method is developed, and the head trajectory controller is designed. The configuration space of a snakelike robot corresponds to the manifold space, the velocity corresponds to the tangent space, the torque space corresponds to the cotangent space, and the kinematic energy provides a Riemann measure on the manifold. Thus, the dynamics of a snakelike robot can be described by Riemann geometry. Additionally, the passive wheels installed under the snakelike robot introduce the velocity constraint, which constrains the velocity space to a subspace of the tangent space. That is, the velocity space forms a distribution, and the dynamics system becomes a nonholonomic dynamics system. For a snakelike robot with passive wheels, the configuration is a Riemann manifold with a distribution. In the distribution, the appropriate base can be chosen to simplify the dynamics. In this paper, a base model is built based on the fiber bundle theory. Any set base is only a section in the fiber bundle. The orthogonal normalization technique is adopted to derive a set base that can simplify the dynamics calculation, and the dynamics-control unified model is derived. Finally, a nine-module snakelike robot is used as an example of the partial feedback linearization method.
Citation statistics
Cited Times:2[CSCD]   [CSCD Record]
Document Type期刊论文
Recommended Citation
GB/T 7714
郭宪,马书根,李斌,等. 基于微分几何的蛇形机器人动力学与控制统一模型[J]. 中国科学:信息科学,2015,45(8):1080-1094.
APA 郭宪,马书根,李斌,王明辉,&王越超.(2015).基于微分几何的蛇形机器人动力学与控制统一模型.中国科学:信息科学,45(8),1080-1094.
MLA 郭宪,et al."基于微分几何的蛇形机器人动力学与控制统一模型".中国科学:信息科学 45.8(2015):1080-1094.
Files in This Item: Download All
File Name/Size DocType Version Access License
基于微分几何的蛇形机器人动力学与控制统一(847KB)期刊论文出版稿开放获取ODC PDDLView Download
Related Services
Recommend this item
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[郭宪]'s Articles
[马书根]'s Articles
[李斌]'s Articles
Baidu academic
Similar articles in Baidu academic
[郭宪]'s Articles
[马书根]'s Articles
[李斌]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[郭宪]'s Articles
[马书根]'s Articles
[李斌]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: 基于微分几何的蛇形机器人动力学与控制统一模型.pdf
Format: Adobe PDF
All comments (0)
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.