SIA OpenIR  > 信息服务与智能控制技术研究室
Selection of spectral data for classification of steels using laser-induced breakdown spectroscopy
Kong HY(孔海洋); Sun LX(孙兰香); Hu JT(胡静涛); Xin Y(辛勇); Cong ZB(丛智博)
作者部门信息服务与智能控制技术研究室
关键词Laser-induced Breakdown Spectroscopy Classification Of Steel Samples Principal Component Analysis Artificial Neural Networks Selection Of Spectral Data
发表期刊Plasma Science and Technology
ISSN1009-0630
2015
卷号17期号:11页码:964-970
收录类别SCI ; EI ; CSCD
EI收录号20154601555150
WOS记录号WOS:000367515100014
CSCD记录号CSCD:5550997
产权排序1
资助机构National High Technology Research and Development Program of China (863 Program) (No. 2012AA040608), National Natural Science Foundation of China (Nos. 61473279, 61004131) and the Development of Scientific Research Equipment Program of Chinese Academy of Sciences (No. YZ201247)
摘要Principal component analysis (PCA) combined with artificial neural networks was used to classify the spectra of 27 steel samples acquired using laser-induced breakdown spectroscopy. Three methods of spectral data selection, selecting all the peak lines of the spectra, selecting intensive spectral partitions and the whole spectra, were utilized to compare the influence of different inputs of PCA on the classification of steels. Three intensive partitions were selected based on experience and prior knowledge to compare the classification, as the partitions can obtain the best results compared to all peak lines and the whole spectra. We also used two test data sets, mean spectra after being averaged and raw spectra without any pretreatment, to verify the results of the classification. The results of this comprehensive comparison show that a back propagation network trained using the principal components of appropriate, carefully selected spectral partitions can obtain the best results. A perfect result with 100% classification accuracy can be achieved using the intensive spectral partitions ranging of 357-367 nm.
语种英语
WOS标题词Science & Technology ; Physical Sciences
WOS类目Physics, Fluids & Plasmas
关键词[WOS]ARTIFICIAL NEURAL-NETWORKS ; MULTIVARIATE-ANALYSIS ; QUANTITATIVE-ANALYSIS ; IDENTIFICATION ; LIBS ; CHINA ; MODEL
WOS研究方向Physics
引用统计
被引频次:6[WOS]   [WOS记录]     [WOS相关记录]
被引频次:1[CSCD]   [CSCD记录]
文献类型期刊论文
条目标识符http://ir.sia.cn/handle/173321/17293
专题信息服务与智能控制技术研究室
通讯作者Sun LX(孙兰香)
作者单位1.Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
2.University of Chinese Academy of Sciences, Beijing, China
3.CAS Key Laboratory of Networked Control System, Shenyang, China
推荐引用方式
GB/T 7714
Kong HY,Sun LX,Hu JT,et al. Selection of spectral data for classification of steels using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology,2015,17(11):964-970.
APA Kong HY,Sun LX,Hu JT,Xin Y,&Cong ZB.(2015).Selection of spectral data for classification of steels using laser-induced breakdown spectroscopy.Plasma Science and Technology,17(11),964-970.
MLA Kong HY,et al."Selection of spectral data for classification of steels using laser-induced breakdown spectroscopy".Plasma Science and Technology 17.11(2015):964-970.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Selection of Spectra(6571KB)期刊论文出版稿开放获取ODC PDDL浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Kong HY(孔海洋)]的文章
[Sun LX(孙兰香)]的文章
[Hu JT(胡静涛)]的文章
百度学术
百度学术中相似的文章
[Kong HY(孔海洋)]的文章
[Sun LX(孙兰香)]的文章
[Hu JT(胡静涛)]的文章
必应学术
必应学术中相似的文章
[Kong HY(孔海洋)]的文章
[Sun LX(孙兰香)]的文章
[Hu JT(胡静涛)]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Selection of Spectral Data for Classification of Steels Using Laser-Induced Breakdown Spectroscopy.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。