SIA OpenIR  > 机器人学研究室
柔性关节机器人高精度建模与控制策略研究
其他题名High-Precision Modeling and Control Strategies of Flexible Joint Robots
王雪竹1,2
导师王越超 ; 李洪谊
分类号TP242
关键词柔性关节机器人 谐波传动 Lugre摩擦 自适应反步法控制 阻抗控制
索取号TP242/W37/2015
页数128页
学位专业模式识别与智能系统
学位名称博士
2015-11-25
学位授予单位中国科学院沈阳自动化研究所
学位授予地点沈阳
作者部门机器人学研究室
摘要本文针对柔性关节机器人的建模和控制策略展开研究。主要研究内容包括柔性关节机器人的高精度建模、位置控制和柔顺控制。首先,开展对柔性关节机器人动力学建模和参数辨识的研究。针对关节摩擦建立能够充分描述其连续、动态、非线性特性的LuGre模型,设计非线性最小二乘拟合和改进的粒子群算法辨识其静态参数和动态参数;然后采用有限元方法对谐波传动进行分析,获取谐波传动在负载力矩作用下的弹性变形特性和啮合变形特性,建立关节柔性模型;最后结合所建的摩擦模型和柔性模型,采用拉格朗日法对多连杆柔性关节机器人进行动力学建模,得到完整的柔性关节机器人动力学模型。其次,在所建立的更完整准确的动力学模型基础上,对柔性关节机器人高精度位置控制进行研究。针对模型参数不确定的单连杆柔性关节机器人,提出一种基于LuGre摩擦补偿的自适应反步法控制器,设计双观测器对LuGre摩擦在线观测和补偿,设计模型参数自适应律以改善反步法对参数误差的敏感性;针对存在连杆和关节耦合项的多连杆柔性关节机器人,提出一种高精度自适应反步法控制器,对摩擦、回差和耦合项设计观测器进行在线估计补偿。理论分析证明了观测器的收敛性和系统的稳定性。然后,为实现良好的机器人和环境接触,以及保证人机合作的安全性,对柔性关节机器人进行柔顺控制研究。设计基于位置控制的阻抗控制策略,并采用自适应反步法位置控制器作为其内环控制;采用连杆端-关节端级联设计方法,分别设计了关节空间下和笛卡尔空间下基于关节力矩反馈的阻抗控制策略,并设计带摩擦补偿的关节力矩控制器作为内环,以跟踪期望关节力矩,理论分析证明了系统的稳定性;在笛卡尔空间下基于关节力矩反馈的柔性关节机器人阻抗控制基础上,设计环境自适应策略,根据模型参数自适应调整控制系统参数,实现在非接触状态下良好的位控性能和接触状态下良好的力控性能,以及接触/非接触状态更稳定的切换。最后,对柔性关节机器人验证平台与实验展开研究。设计了基于谐波测力的关节力矩测量方法,并对其进行优化;搭建了三连杆柔性关节机器人平台;基于所搭建的柔性关节机器人平台开展实验研究,实验结果验证了本文相关研究方法的有效性。
其他摘要This paper studies the modeling and control strategies of flexible joint robots, which includes dynamic modeling, motion control and compliant control. First, high-precision dynamic modeling and parameter identification of flexible joint robots are researched. LuGre model of joint friction is presented, which can describe the continuous, dynamic and nonlinear characteristics of joint friction; nonlinear least-squares fitting method and improved particle swarm optimization are developed to identify its static and dynamic parameters respectively. Then, with finite element analysis of harmonic drive, the elastic deformation and engagement deformation of flexspline under load torque are obtained and used to build joint flexibility model. Finally, using Lagrangian method, the complete dynamic model of multi-link flexible joint robot including the proposed friction and flexibility models is established. Second, based on the proposed dynamic model, high-precision motion control of flexible joint robots is studied. For the single-link flexible joint robot with parameter inaccuracies, an adaptive backstepping method with friction compensation is presented, in which the joint friction described by LuGre model is compensated based on dual observers, and the inaccuracies of robot parameters are resolved by adaptive parameters estimation. For the multi-link flexible joint robot with coupling between the links and the actuators, a high-precision adaptive backstepping control method with observers is proposed, in which non-measurable terms such as friction, backlash and coupling are estimated and compensated on line. Theoretical analysis proves the convergence of the observer and the stability of the closed-loop system. Then, in order to achieve good contact performance, and to guarantee the safety of human-robot interaction, compliant control of flexible joint robots is researched. Using the proposed adaptive backstepping motion controller in the inner loop, impedance control based on motion control is developed. With a link-joint cascaded structure, impedance control strategies in joint space and in Cartesian space are designed respectively based on joint torque feedback; and a joint torque controller with friction compensation is developed as the inner joint torque tracking loop. Theoretical analysis shows the stability of the control system. According to the proposed impedance control in Cartesian space based on joint torque feedback, adaptive laws for environment are presented, which could adjust coefficients of control system to different environments, resulting in good position control performance for free space movement and good force control performance for contact tasks, and improve the switching stability between free space state and contact state. Finally, we study the experimental platform flexible joint robots. A build-in torque sensor for harmonic drive is designed and optimized. A 3 DOF flexible joint robot system has been constructed, then experiments are conducted on this platform. The results verify the effectivity of the proposed control strategies.
语种中文
产权排序1
文献类型学位论文
条目标识符http://ir.sia.cn/handle/173321/17531
专题机器人学研究室
作者单位1.中国科学院沈阳自动化研究所
2.中国科学院大学
推荐引用方式
GB/T 7714
王雪竹. 柔性关节机器人高精度建模与控制策略研究[D]. 沈阳. 中国科学院沈阳自动化研究所,2015.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
柔性关节机器人高精度建模与控制策略研究.(3842KB)学位论文 开放获取CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[王雪竹]的文章
百度学术
百度学术中相似的文章
[王雪竹]的文章
必应学术
必应学术中相似的文章
[王雪竹]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。