SIA OpenIR  > 机器人学研究室
User-curated image collections: Modeling and recommendation
Li, Yuncheng; Mei T(梅涛); Cong Y(丛杨); Luo JB(罗杰波)
作者部门机器人学研究室
会议名称3rd IEEE International Conference on Big Data, IEEE Big Data 2015
会议日期October 29-November 1, 2015
会议地点Santa Clara, CA, United states
会议录名称Proceedings - 2015 IEEE International Conference on Big Data, IEEE Big Data 2015
出版者IEEE
出版地Piscataway, NJ, USA
2015
页码591-600
收录类别EI ; CPCI(ISTP)
EI收录号20161702280775
WOS记录号WOS:000380404600072
产权排序3
ISBN号978-1-4799-9925-5
关键词Image Collection Similarity Measure Visual Features Sparse Representation Metric Learning
摘要Most state-of-the-art image retrieval and recommendation systems predominantly focus on individual images. In contrast, socially curated image collections, condensing distinctive yet coherent images into one set, are largely overlooked by the research communities. In this paper, we aim to design a novel recommendation system that can provide users with image collections relevant to individual personal preferences and interests. To this end, two key issues need to be addressed, i.e., image collection modeling and similarity measurement. For image collection modeling, we consider each image collection as a whole in a group sparse reconstruction framework and extract concise collection descriptors given the pretrained dictionaries. We then consider image collection recommendation as a dynamic similarity measurement problem in response to user's clicked image set, and employ a metric learner to measure the similarity between the image collection and the clicked image set. As there is no previous work directly comparable to this study, we implement several competitive baselines and related methods for comparison. The evaluations on a large scale Pinterest data set have validated the effectiveness of our proposed methods for modeling and recommending image collections.
语种英语
引用统计
被引频次:2[WOS]   [WOS记录]     [WOS相关记录]
文献类型会议论文
条目标识符http://ir.sia.cn/handle/173321/18519
专题机器人学研究室
通讯作者Li, Yuncheng
作者单位1.University of Rochester, Department of Computer Science, Rochester, NY, United States
2.Microsoft Research, Building 2, No. 5 Dan Ling Street, Haidian District, Beijing, China
3.Chinese Academy of Sciences, Shenyang Institute of Automation, State Key Laboratory of Robotics, China
推荐引用方式
GB/T 7714
Li, Yuncheng,Mei T,Cong Y,et al. User-curated image collections: Modeling and recommendation[C]. Piscataway, NJ, USA:IEEE,2015:591-600.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
User-curated image c(1100KB)会议论文 开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Yuncheng]的文章
[Mei T(梅涛)]的文章
[Cong Y(丛杨)]的文章
百度学术
百度学术中相似的文章
[Li, Yuncheng]的文章
[Mei T(梅涛)]的文章
[Cong Y(丛杨)]的文章
必应学术
必应学术中相似的文章
[Li, Yuncheng]的文章
[Mei T(梅涛)]的文章
[Cong Y(丛杨)]的文章
相关权益政策
暂无数据
收藏/分享
文件名: User-curated image collections.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。