SIA OpenIR  > 光电信息技术研究室
Target tracking using high-dimension data clustering
其他题名采用高维数据聚类的目标跟踪
Shao CY(邵春艳); Ding QH(丁庆海); Luo HB(罗海波); Li YL(李玉莲)
作者部门光电信息技术研究室
关键词High Dimension Data Clustering Affine Deformed Object Target Tracking Rigid Body
发表期刊红外与激光工程
ISSN1007-2276
2016
卷号45期号:4页码:258-267
收录类别EI ; CSCD
EI收录号20162302456307
CSCD记录号CSCD:5697014
产权排序1
摘要Inspired by the fact that a rigid body has consistent transformation for its individual part, a novel target tracking algorithm based on high-dimension data clustering is proposed. The proposed measure is proved to be available in object tracking mathematically. Thus, it is called the High- Dimension Data Clustering (HDDC) tracker. The frameworks of proposed method are as follows. First, Harris detector is utilized to extract the corners both in the template and the tracking region. Second, these feature points are grouped via their position information separately. Third, affine matrixes between the template and the tracking region are calculated among their respective feature groups. At last, high-dimension data clustering is carried out to measure these matrixes, and the feature points corresponding with the similar matrixes that are tracked targets. Extensive experimental results demonstrate that HDDC is efficient on measuring affine deformed objects and outperforms some state-of-the-art discriminative tracking methods. 
语种英语
引用统计
文献类型期刊论文
条目标识符http://ir.sia.cn/handle/173321/18675
专题光电信息技术研究室
通讯作者Shao CY(邵春艳)
作者单位1.Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
2.University of Chinese Academy of Sciences, Beijing 100049, China
3.Key Laboratory of Opt-Electronic Information Processing, Chinese Academy of Sciences, Shenyang 110016, China
4.Space Star Technology Co., Ltd, Beijing, 100086, China
5.The Key Lab of Image Understanding and Computer Vision, Shenyang, Liaoning Province, 110016, China
6.Shenyang Metrology Testing Institution, Shenyang 110016, China
推荐引用方式
GB/T 7714
Shao CY,Ding QH,Luo HB,et al. Target tracking using high-dimension data clustering[J]. 红外与激光工程,2016,45(4):258-267.
APA Shao CY,Ding QH,Luo HB,&Li YL.(2016).Target tracking using high-dimension data clustering.红外与激光工程,45(4),258-267.
MLA Shao CY,et al."Target tracking using high-dimension data clustering".红外与激光工程 45.4(2016):258-267.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Target tracking usin(2208KB)期刊论文作者接受稿开放获取ODC PDDL浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Shao CY(邵春艳)]的文章
[Ding QH(丁庆海)]的文章
[Luo HB(罗海波)]的文章
百度学术
百度学术中相似的文章
[Shao CY(邵春艳)]的文章
[Ding QH(丁庆海)]的文章
[Luo HB(罗海波)]的文章
必应学术
必应学术中相似的文章
[Shao CY(邵春艳)]的文章
[Ding QH(丁庆海)]的文章
[Luo HB(罗海波)]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Target tracking using high-dimension data clustering.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。