SIA OpenIR  > 光电信息技术研究室
噪声模糊图像盲目反降晰的模糊核准确估计
Alternative TitleAccurate kernel estimation for blind deblurring of noisy and blurred images
孙士洁; 赵怀慈; 郝明国; 李波
Department光电信息技术研究室
Source Publication计算机辅助设计与图形学学报
ISSN1003-9775
2016
Volume28Issue:5Pages:813-820
Indexed ByEI ; CSCD
EI Accession number20162402489865
CSCD IDCSCD:5705381
Contribution Rank1
Funding Organization总装国防预研项目
Keyword盲目图像反降晰 噪声模糊图像 显著结构 图像边缘 模糊核估计
Abstract针对大多数先进的单幅图像盲目反降晰技术在噪声无法忽略时,仍不能很好地处理模糊核估计质量退化严重的问题,提出一种利用图像显著结构从单幅噪声模糊图像中准确估计模糊核的方法。首先通过降噪预处理对图像噪声进行抑制,利用基于全总变分模型的方法提取模糊图像的显著结构,进而运用梯度选择方法移除不利于模糊核估计的显著边缘,提高模糊核估计的鲁棒性;然后采取两阶段模糊核估计策略,运用基于图像显著结构模糊核估计方法和迭代支持域检测技术实现模糊核的准确估计;最后通过稀疏先验约束的非盲目图像解卷积方法完成最终的图像恢复.实验结果表明,与已有方法相比,该方法在合成和真实图像上都能更准确地估计出噪声模糊图像的模糊核,获得更好的复原图像质量,可有效地处理图像反降晰对图像噪声敏感问题,实现了噪声模糊图像模糊核的准确估计。
Other AbstractMost state-of-the-art single image blind deblurring techniques can't still handle perfectly the problem that the quality of blur kernel estimate can be degraded dramatically when the input image noise can't be ignored. In this work, we present a new method for estimating an accurate blur kernel from a blurry and noisy image using salient image structure. First, we use denoising as a preprocess to remove the input image noise, and then compute salient structure of the denoised result based on the total variation (TV) model. We also apply a gradient selection method to remove those salient edges that have a possible adverse effect on blur kernel estimation, thus improving the robustness of blur kernel estimation. Next, we adopt a two-phase blur kernel estimation strategy to achieve an accurate kernel estimation by taking advantage of the blur kernel estimation method from salient structure and iterative support detection (ISD) technique. Finally, we choose to use the non-blind deconvolution method with sparse prior knowledge to attain the final latent image restoration. Experiment results on synthetic and real world data show that our method produces more accurate blur kernels and higher quality latent images than previous approaches on noisy and blurry images. It handles effectively the truth that image deblurring techniques are very sensitive to noise, and estimates an accurate blur kernel from a noisy and blurry image. 
Language中文
Citation statistics
Document Type期刊论文
Identifierhttp://ir.sia.cn/handle/173321/18722
Collection光电信息技术研究室
Corresponding Author孙士洁
Affiliation1.中国科学院沈阳自动化研究所光电信息技术研究室
2.中国科学院大学
3.中国科学院光电信息处理重点实验室
4.辽宁省图像理解与视觉计算重点实验室
5.沈阳工程学院信息学院
Recommended Citation
GB/T 7714
孙士洁,赵怀慈,郝明国,等. 噪声模糊图像盲目反降晰的模糊核准确估计[J]. 计算机辅助设计与图形学学报,2016,28(5):813-820.
APA 孙士洁,赵怀慈,郝明国,&李波.(2016).噪声模糊图像盲目反降晰的模糊核准确估计.计算机辅助设计与图形学学报,28(5),813-820.
MLA 孙士洁,et al."噪声模糊图像盲目反降晰的模糊核准确估计".计算机辅助设计与图形学学报 28.5(2016):813-820.
Files in This Item: Download All
File Name/Size DocType Version Access License
噪声模糊图像盲目反降晰的模糊核准确估计.(2844KB)期刊论文作者接受稿开放获取ODC PDDLView Download
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[孙士洁]'s Articles
[赵怀慈]'s Articles
[郝明国]'s Articles
Baidu academic
Similar articles in Baidu academic
[孙士洁]'s Articles
[赵怀慈]'s Articles
[郝明国]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[孙士洁]'s Articles
[赵怀慈]'s Articles
[郝明国]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: 噪声模糊图像盲目反降晰的模糊核准确估计.pdf
Format: Adobe PDF
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.