SIA OpenIR  > 机器人学研究室
Total Variation Regularized Tensor RPCA for Background Subtraction from Compressive Measurements
Cao WF(曹文飞); Wang Y(王尧); Sun J(孙剑); Meng DY(孟德宇); Yang, Can; Cichocki, Andrzej; Xu ZB(徐宗本)
作者部门机器人学研究室
发表期刊IEEE Transactions on Image Processing
ISSN1057-7149
2016
卷号25期号:9页码:4075-4090
收录类别SCI ; EI
EI收录号20163002639090
WOS记录号WOS:000394573100001
产权排序2
资助机构Major State Basic Research Program under Grant 2013CB329404, in part by the National Natural Science Foundation of China under Grant 11501440, Grant 61273020, Grant 61373114, Grant 61472313, Grant 61501389, and Grant 61573270, in part by the Fundamental Research Funds for the Central Universities under Grant 1301030600, in part by the Hong Kong Research Grant Council under Grant 22302815, and in part by Hong Kong Baptist University under Gant FRG2/15-16/011.
摘要Background subtraction has been a fundamental and widely studied task in video analysis, with a wide range of applications in video surveillance, teleconferencing, and 3D modeling. Recently, motivated by compressive imaging, background subtraction from compressive measurements (BSCM) is becoming an active research task in video surveillance. In this paper, we propose a novel tensor-based robust principal component analysis (TenRPCA) approach for BSCM by decomposing video frames into backgrounds with spatial-temporal correlations and foregrounds with spatio-temporal continuity in a tensor framework. In this approach, we use 3D total variation to enhance the spatio-temporal continuity of foregrounds, and Tucker decomposition to model the spatio-temporal correlations of video background. Based on this idea, we design a basic tensor RPCA model over the video frames, dubbed as the holistic TenRPCA model. To characterize the correlations among the groups of similar 3D patches of video background, we further design a patch-group-based tensor RPCA model by joint tensor Tucker decompositions of 3D patch groups for modeling the video background. Efficient algorithms using the alternating direction method of multipliers are developed to solve the proposed models. Extensive experiments on simulated and real-world videos demonstrate the superiority of the proposed approaches over the existing state-of-the-art approaches.
语种英语
WOS标题词Science & Technology ; Technology
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
关键词[WOS]OBJECT DETECTION ; VIDEO ; TRACKING ; SPARSE ; ALGORITHM
WOS研究方向Computer Science ; Engineering
引用统计
被引频次:24[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.sia.cn/handle/173321/18782
专题机器人学研究室
通讯作者Wang Y(王尧)
作者单位1.School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, China
2.School of Mathematics and Information Science, Shaanxi Normal University, Xi'an, 710119, China
3.Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
4.Department of Mathematics, Hong Kong Baptist University, Hong Kong
5.RIKEN Brain Science Institute, Saitama, 351-0198, Japan
6.Systems Research Institute, Polish Academy of Sciences, Warsaw, 01-447, Poland
推荐引用方式
GB/T 7714
Cao WF,Wang Y,Sun J,et al. Total Variation Regularized Tensor RPCA for Background Subtraction from Compressive Measurements[J]. IEEE Transactions on Image Processing,2016,25(9):4075-4090.
APA Cao WF.,Wang Y.,Sun J.,Meng DY.,Yang, Can.,...&Xu ZB.(2016).Total Variation Regularized Tensor RPCA for Background Subtraction from Compressive Measurements.IEEE Transactions on Image Processing,25(9),4075-4090.
MLA Cao WF,et al."Total Variation Regularized Tensor RPCA for Background Subtraction from Compressive Measurements".IEEE Transactions on Image Processing 25.9(2016):4075-4090.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Total Variation Regu(7814KB)期刊论文作者接受稿开放获取ODC PDDL浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Cao WF(曹文飞)]的文章
[Wang Y(王尧)]的文章
[Sun J(孙剑)]的文章
百度学术
百度学术中相似的文章
[Cao WF(曹文飞)]的文章
[Wang Y(王尧)]的文章
[Sun J(孙剑)]的文章
必应学术
必应学术中相似的文章
[Cao WF(曹文飞)]的文章
[Wang Y(王尧)]的文章
[Sun J(孙剑)]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Total Variation Regularized Tensor RPCA for Background Subtraction from Compressive Measurements.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。