SIA OpenIR  > 工业控制网络与系统研究室
基于扩展卡尔曼神经网络算法估计电池SOC
其他题名Estimation of battery SOC based on extended Kalman filter with neural network algorithms
韩忠华; 刘珊珊; 石刚; 董挺
作者部门工业控制网络与系统研究室
关键词锂离子电池soc 扩展卡尔曼算法 神经网络 Rc电路模型
发表期刊电子技术应用
ISSN0258-7998
2016
卷号42期号:7页码:76-78,82
产权排序1
资助机构国家重大科技专项项目(2011ZX02601-005) ; 校涵育项目(XKHY2-61)
摘要针对汽车锂电池的荷电状态(SOC)的问题,基于Thevenin电路为等效电路并且应用扩展卡尔曼算法(EKF)结合神经网络算法进行估计。在进行卡尔曼滤波算法估算过程中,需要用到实时的估算模型参数值(最新值),即在不同的SOC下模型的参数不同。传统做法是把SOC与各个参数的关系进行普通的拟合,这种方法在拟合过程中存在较大误差。为了解决这个问题,利用神经网络拟合各个电路模型参数与SOC关系曲线。试验结果表明,与单纯的扩展卡尔曼算法相比,该方法能够准确估计电池剩余电量,误差小于3%。
其他摘要An extended Kalman filter algorithm(EKF) with neural network is used to estimate the state of lithium battery(SOC), which is based on Thevenin equivalent circuit. In the process of extended Kalman filter estimation, the real-time model parameters should be updated with the different SOC regard to the different SOC the different model parameters. The traditional approach which has a big error is that the fitting curve between SOC and the various separate parameters is common. To solve this problem neural net- work is applied to fit curve between the parameters of circuit model and the SOC separately. Finally, the results with the error less than 3% show that compared with the pure extended Kalman algorithm, the method can realize the more accurate estimation of the remaining battery power.
语种中文
文献类型期刊论文
条目标识符http://ir.sia.cn/handle/173321/18820
专题工业控制网络与系统研究室
通讯作者韩忠华
作者单位1.沈阳建筑大学信息与控制工程学院
2.中国科学院沈阳自动化研究所
3.中国电子技术标准化研究院
推荐引用方式
GB/T 7714
韩忠华,刘珊珊,石刚,等. 基于扩展卡尔曼神经网络算法估计电池SOC[J]. 电子技术应用,2016,42(7):76-78,82.
APA 韩忠华,刘珊珊,石刚,&董挺.(2016).基于扩展卡尔曼神经网络算法估计电池SOC.电子技术应用,42(7),76-78,82.
MLA 韩忠华,et al."基于扩展卡尔曼神经网络算法估计电池SOC".电子技术应用 42.7(2016):76-78,82.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
基于扩展卡尔曼神经网络算法估计电池SOC(330KB)期刊论文作者接受稿开放获取ODC PDDL浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[韩忠华]的文章
[刘珊珊]的文章
[石刚]的文章
百度学术
百度学术中相似的文章
[韩忠华]的文章
[刘珊珊]的文章
[石刚]的文章
必应学术
必应学术中相似的文章
[韩忠华]的文章
[刘珊珊]的文章
[石刚]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 基于扩展卡尔曼神经网络算法估计电池SOC.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。