SIA OpenIR  > 空间自动化技术研究室
一种输电线断股故障的机器视觉检测方法
Alternative TitleMachine vision-based detection method for transmission line strand breakage fault
宋屹峰; 王洪光; 姜勇; 王林; 姜文东; 王灿灿; 初金良
Department空间自动化技术研究室
Rights Holder中国科学院沈阳自动化研究所 ; 国网浙江省电力公司 ; 国网浙江省电力公司丽水供电公司
Patent Agent沈阳科苑专利商标代理有限公司 21002
Country中国
Subtype发明
Status有权
Abstract

本发明公开了一种用于输电线维护机器人的基于机器图像的输电线断股故障检测方法,属于数字图像识别领域,目的在于克服现有检测方法的问题,提高输电线路断股故障检测的自动化程度与准确性。本发明用于电力系统输电线断股故障的报警。检测顺序如下:(1)图像的获取步骤;(2)图像的预处理步骤;(3)图像的特征提取步骤;(4)图像的故障检测步骤。本发明将数字图像处理技术引入到输电线断股故障检测,利用输电线维护机器人采集的图像信息自动识别出输电线路断股故障。为保证输电线路的正常运行提供了一种可行的智能化的技术手段。

Other Abstract

The invention discloses a transmission line strand breakage fault detection method based on machine images for transmission line maintenance robots, belongs to the field of digital image identification, and aims to overcome the problems in the existing detection method and improve the degree of automation and accuracy of transmission line strand breakage fault detection. The method of the invention is used to raise the alarm for a power system transmission line strand breakage fault, and comprises (1) an image acquisition step, (2) an image preprocessing step, (3) an image feature extraction step, and (4) an image fault detection step. According to the invention, a digital image processing technology is introduced into transmission line strand breakage fault detection, and a transmission line strand breakage fault is identified automatically based on image information acquired by a transmission line maintenance robot. A feasible intelligent technical means is provided for ensuring normal operation of transmission lines.

PCT Attributes
Application Date2014-12-02
2016-06-29
Date Available2018-12-07
Application NumberCN201410720073.8
Open (Notice) NumberCN105718842A
Language中文
Contribution Rank1
Document Type专利
Identifierhttp://ir.sia.cn/handle/173321/18979
Collection空间自动化技术研究室
Affiliation1.中国科学院沈阳自动化研究所
2.国网浙江省电力公司
3.国网浙江省电力公司丽水供电公司
Recommended Citation
GB/T 7714
宋屹峰,王洪光,姜勇,等. 一种输电线断股故障的机器视觉检测方法[P]. 2016-06-29.
Files in This Item: Download All
File Name/Size DocType Version Access License
CN201410720073.8.pdf(2334KB)专利 开放获取CC BY-NC-SAView Download
CN201410720073.8授权.p(881KB)专利 开放获取CC BY-NC-SAView Download
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[宋屹峰]'s Articles
[王洪光]'s Articles
[姜勇]'s Articles
Baidu academic
Similar articles in Baidu academic
[宋屹峰]'s Articles
[王洪光]'s Articles
[姜勇]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[宋屹峰]'s Articles
[王洪光]'s Articles
[姜勇]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: CN201410720073.8.pdf
Format: Adobe PDF
File name: CN201410720073.8授权.pdf
Format: Adobe PDF
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.