基于PSO-OCSVM的工业控制系统通信行为异常检测方法 | |
Alternative Title | PSO-OCSVM based industrial control system communication behavior anomaly detection method |
尚文利![]() ![]() ![]() ![]() ![]() | |
Department | 工业控制网络与系统研究室 |
Rights Holder | 中国科学院沈阳自动化研究所 |
Patent Agent | 沈阳科苑专利商标代理有限公司 21002 |
Country | 中国 |
Subtype | 发明 |
Status | 有权 |
Abstract | 本发明基于OCSVM算法提出了一种基于PSO-OCSVM的工业控制系统通信行为异常检测方法。该发明利用改进的单类支持向量机算法,根据正常的Modbus功能码序列建立正常通信行为轮廓,设计了一种基于粒子群算法(PSO)进行参数优化的PSO-OCSVM方法,建立入侵检测模型,识别出异常的Modbus?TCP通信流量。该发明提高了异常检测的效率及其可靠性,更适用于实际应用。 |
Other Abstract | The invention puts forward a PSO-OCSVM based industrial control system communication behavior anomaly detection method based on an OCSVM algorithm. According to the invention, an improved one-class support vector machine algorithm is adopted to establish a normal communication behavior profile according to a normal Modbus function code sequence, a PSO-OCSVM method for parameter optimization based on a particle swarm optimization (PSO) algorithm is designed, and an intrusion detection model is established to identify abnormal Modbus TCP communication traffic. The method of the invention improves the reliability and efficiency of anomaly detection, and is more suitable for practical application. |
PCT Attributes | 否 |
Application Date | 2014-11-26 |
2016-06-22 | |
Date Available | 2017-04-05 |
Application Number | CN201410692755.2 |
Open (Notice) Number | CN105703963A |
Language | 中文 |
Contribution Rank | 1 |
Document Type | 专利 |
Identifier | http://ir.sia.cn/handle/173321/19084 |
Collection | 工业控制网络与系统研究室 |
Affiliation | 中国科学院沈阳自动化研究所 |
Recommended Citation GB/T 7714 | 尚文利,万明,李琳,等. 基于PSO-OCSVM的工业控制系统通信行为异常检测方法[P]. 2016-06-22. |
Files in This Item: | Download All | |||||
File Name/Size | DocType | Version | Access | License | ||
CN201410692755.2.pdf(951KB) | 专利 | 开放获取 | CC BY-NC-SA | View Download | ||
CN201410692755.2授权.p(578KB) | 专利 | 开放获取 | CC BY-NC-SA | View Download |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment