中国科学院沈阳自动化研究所机构知识库
Advanced  
SIA OpenIR  > 光电信息技术研究室  > 会议论文
题名: Improved Kernel Correlation Filter Tracking with Gaussian scale space
作者: Tan SK(谭舒昆); Liu YP(刘云鹏); Li YC(李义翠)
作者部门: 光电信息技术研究室
会议名称: International Symposium on Optoelectronic Technology and Application(OTA 2016)
会议日期: May 9-11, 2016
会议地点: Beijing
会议录: Proceedings of the International Symposium on Optoelectronic Technology and Application(OTA 2016)
出版日期: 2016
页码: 1
关键词: visual object tracking ; kernel correlation filter ; Gaussian scale space
摘要: Visual tracking is one of the most challenging tasks in the field of computer vision and is related to a wide range of applications like surveillance and robotics. Tracking-by-detection methods are widely used in video based object tracking for many years. Recently, Kernel Correlation Filter(KCF) is...
语种: 英语
产权排序: 1
内容类型: 会议论文
URI标识: http://ir.sia.cn/handle/173321/19160
Appears in Collections:光电信息技术研究室_会议论文

Files in This Item: Download All
File Name/ File Size Content Type Version Access License
Improved Kernel Correlation Filter Tracking with Gaussian scale space.pdf(212KB)会议论文--开放获取View Download

Recommended Citation:
Tan SK,Liu YP,Li YC. Improved Kernel Correlation Filter Tracking with Gaussian scale space[C]. 见:International Symposium on Optoelectronic Technology and Application(OTA 2016). Beijing. May 9-11, 2016.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[谭舒昆]'s Articles
[刘云鹏]'s Articles
[李义翠]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[谭舒昆]‘s Articles
[刘云鹏]‘s Articles
[李义翠]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
文件名: Improved Kernel Correlation Filter Tracking with Gaussian scale space.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2016  中国科学院沈阳自动化研究所 - Feedback
Powered by CSpace