SIA OpenIR  > 机器人学研究室
Learning optimal measurement and control of assembly robot for large-scale heavy-weight parts
Wan A(万安); Xu J(徐静); Zhang, Song; Zhang, Zonghua; Chen K(陈恳)
作者部门机器人学研究室
会议名称2015 IEEE International Conference on Robotics and Biomimetics, IEEE-ROBIO 2015
会议日期December 6-9, 2015
会议地点Zhuhai, China
会议录名称Proceedings of the 2015 IEEE International Conference on Robotics and Biomimetics
出版者IEEE
出版地Piscataway, NJ, USA
2015
页码1240-1246
收录类别EI ; CPCI(ISTP)
EI收录号20161802327762
WOS记录号WOS:000380476200208
产权排序1
ISBN号978-1-4673-9674-5
摘要Due to their advantages of high speed, high accuracy, high flexibility, and low cost, assembly robots are widely used in electronics and automotive industries. However, it is still a significant challenge for large-scale, heavy-weight part assembly using industrial robots. First, the deformation and motion errors of industrial robots caused by big payload cannot meet the accuracy requirement of large structure assembly. To solve this problem, an online kinematics compensation method based on Gaussian Process Regression is developed to predict and compensate the deformation and uncertainties of a large structure assembly robot. Second, before the assembly process, the optimal assembly path has to be planned. To this end, we propose an assembly path planning method based on learning from demonstration. Finally, an event-based control method is deployed to achieve optimal assembly cycle time to improve assembly efficiency and performance. An experimental system is developed to validate the proposed algorithm for large structure assembly and the results demonstrate that the proposed method can improve the assembly efficiency by more than 40%.
语种英语
引用统计
被引频次:2[WOS]   [WOS记录]     [WOS相关记录]
文献类型会议论文
条目标识符http://ir.sia.cn/handle/173321/19181
专题机器人学研究室
作者单位1.Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
2.State key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
3.School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, United States
4.School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China
推荐引用方式
GB/T 7714
Wan A,Xu J,Zhang, Song,et al. Learning optimal measurement and control of assembly robot for large-scale heavy-weight parts[C]. Piscataway, NJ, USA:IEEE,2015:1240-1246.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Learning optimal mea(540KB)会议论文 开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wan A(万安)]的文章
[Xu J(徐静)]的文章
[Zhang, Song]的文章
百度学术
百度学术中相似的文章
[Wan A(万安)]的文章
[Xu J(徐静)]的文章
[Zhang, Song]的文章
必应学术
必应学术中相似的文章
[Wan A(万安)]的文章
[Xu J(徐静)]的文章
[Zhang, Song]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Learning optimal measurement and control of assembly robot for large-scale heavy-weight parts.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。