SIA OpenIR  > 空间自动化技术研究室
Robot Obstacle Avoidance Learning Based on Mixture Models
Zhang HW(张会文); Han XN(韩小宁); Fu ML(付明亮); Zhou WJ(周维佳)
作者部门空间自动化技术研究室
发表期刊Journal of Robotics
ISSN1687-9600
2016
卷号2016页码:1-14
收录类别EI
EI收录号20164002870742
产权排序1
资助机构National Natural Science Foundation of China (Grant no. 51505470) and the Dr. Startup Fund in Liaoning province (20141152).
摘要We briefly surveyed the existing obstacle avoidance algorithms; then a new obstacle avoidance learning framework based on learning from demonstration (LfD) is proposed. The main idea is to imitate the obstacle avoidance mechanism of human beings, in which humans learn to make a decision based on the sensor information obtained by interacting with environment. Firstly, we endow robots with obstacle avoidance experience by teaching them to avoid obstacles in different situations. In this process, a lot of data are collected as a training set; then, to encode the training set data, which is equivalent to extracting the constraints of the task, Gaussian mixture model (GMM) is used. Secondly, a smooth obstacle-free path is generated by Gaussian mixture regression (GMR). Thirdly, a metric of imitation performance is constructed to derive a proper control policy. The proposed framework shows excellent generalization performance, which means that the robots can fulfill obstacle avoidance task efficiently in a dynamic environment. More importantly, the framework allows learning a wide variety of skills, such as grasp and manipulation work, which makes it possible to build a robot with versatile functions. Finally, simulation experiments are conducted on a Turtlebot robot to verify the validity of our algorithms.
语种英语
文献类型期刊论文
条目标识符http://ir.sia.cn/handle/173321/19199
专题空间自动化技术研究室
通讯作者Zhang HW(张会文)
作者单位1.State Key Laboratory of Robotics, Shenyang Institute of Automation, Shenyang 110016, China
2.University of Chinese Academy of Sciences, Beijing, China
推荐引用方式
GB/T 7714
Zhang HW,Han XN,Fu ML,et al. Robot Obstacle Avoidance Learning Based on Mixture Models[J]. Journal of Robotics,2016,2016:1-14.
APA Zhang HW,Han XN,Fu ML,&Zhou WJ.(2016).Robot Obstacle Avoidance Learning Based on Mixture Models.Journal of Robotics,2016,1-14.
MLA Zhang HW,et al."Robot Obstacle Avoidance Learning Based on Mixture Models".Journal of Robotics 2016(2016):1-14.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Robot Obstacle Avoid(5867KB)期刊论文作者接受稿开放获取ODC PDDL浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang HW(张会文)]的文章
[Han XN(韩小宁)]的文章
[Fu ML(付明亮)]的文章
百度学术
百度学术中相似的文章
[Zhang HW(张会文)]的文章
[Han XN(韩小宁)]的文章
[Fu ML(付明亮)]的文章
必应学术
必应学术中相似的文章
[Zhang HW(张会文)]的文章
[Han XN(韩小宁)]的文章
[Fu ML(付明亮)]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Robot Obstacle Avoidance Learning Based on Mixture Models.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。