SIA OpenIR  > 其他
Dual-Layer Density Estimation for Multiple Object Instance Detection
Zhang Q(张强); Qu DK(曲道奎); Xu F(徐方); Jia K(贾凯); Sun, Xueying
作者部门其他
发表期刊JOURNAL OF SENSORS
ISSN1687-725X
2016
页码1-12
收录类别SCI ; EI
EI收录号20164002871739
WOS记录号WOS:000383462600001
产权排序1
资助机构Shenyang SIASUN Robot Automation Co., Ltd. ; National Key Technology R&D Program, China [2015BAF13B00]
摘要This paper introduces a dual-layer density estimation-based architecture for multiple object instance detection in robot inventory management applications. The approach consists of raw scale-invariant feature transform (SIFT) feature matching and key point projection. The dominant scale ratio and a reference clustering threshold are estimated using the first layer of the density estimation. A cascade of filters is applied after feature template reconstruction and refined feature matching to eliminate false matches. Before the second layer of density estimation, the adaptive threshold is finalized by multiplying an empirical coefficient for the reference value. The coefficient is identified experimentally. Adaptive threshold-based grid voting is applied to find all candidate object instances. Error detection is eliminated using final geometric verification in accordance with Random Sample Consensus (RANSAC). The detection results of the proposed approach are evaluated on a self-built dataset collected in a supermarket. The results demonstrate that the approach provides high robustness and low latency for inventory management application.
语种英语
WOS标题词Science & Technology ; Technology
WOS类目Engineering, Electrical & Electronic ; Instruments & Instrumentation
关键词[WOS]RECOGNITION ; FEATURES ; SPACE
WOS研究方向Engineering ; Instruments & Instrumentation
引用统计
文献类型期刊论文
条目标识符http://ir.sia.cn/handle/173321/19239
专题其他
通讯作者Zhang Q(张强)
作者单位1.State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, No. 114 Nanta Street, Shenhe District, Shenyang 110016, China
2.University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
3.SIASUN Robot and Automation Co., Ltd., No. 16 Jinhui Street, Hunnan New District, Shenyang, 110168, China
4.Department of Information Service and Intelligent Control, Chinese Academy of Sciences, No. 114 Nanta Street, Shenhe District, Shenyang 110016, China
推荐引用方式
GB/T 7714
Zhang Q,Qu DK,Xu F,et al. Dual-Layer Density Estimation for Multiple Object Instance Detection[J]. JOURNAL OF SENSORS,2016:1-12.
APA Zhang Q,Qu DK,Xu F,Jia K,&Sun, Xueying.(2016).Dual-Layer Density Estimation for Multiple Object Instance Detection.JOURNAL OF SENSORS,1-12.
MLA Zhang Q,et al."Dual-Layer Density Estimation for Multiple Object Instance Detection".JOURNAL OF SENSORS (2016):1-12.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Dual-Layer Density E(7426KB)期刊论文作者接受稿开放获取ODC PDDL浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang Q(张强)]的文章
[Qu DK(曲道奎)]的文章
[Xu F(徐方)]的文章
百度学术
百度学术中相似的文章
[Zhang Q(张强)]的文章
[Qu DK(曲道奎)]的文章
[Xu F(徐方)]的文章
必应学术
必应学术中相似的文章
[Zhang Q(张强)]的文章
[Qu DK(曲道奎)]的文章
[Xu F(徐方)]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Dual-Layer Density Estimation for Multiple Object Instance Detection.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。