SIA OpenIR  > 机器人学研究室
Statistical layout of improved image descriptor for pedestrian detection
Bai M(白明); Zhuang Y(庄严); Wang W(王伟)
作者部门机器人学研究室
发表期刊ICIC Express Letters
ISSN1881-803X
2010
卷号4期号:5 B页码:1931-1936
收录类别EI
EI收录号20103913254454
产权排序1
摘要An automatic and robust approach for pedestrian detection is proposed in natural scene images, even in the presence of clutter and occlusion. An improved statistical descriptor is designed to encode more support vectors, and the dimensionality reduction method compactly optimizes it without its performance degradation. To improve the efficiency, similarity measurement kernel adopts a pyramid matching mode, and the statistic multi-models detector significantly improves the performance on challenging scenes. Comparisons in various aspects validate that the improved descriptor is more distinctive and robust, which results in a higher discriminant performance and a better efficiency. The experimental results testify the effectivity and robustness of pedestrian detection in complicated scene images.
语种英语
文献类型期刊论文
条目标识符http://ir.sia.cn/handle/173321/19916
专题机器人学研究室
通讯作者Bai M(白明)
作者单位1.Research Center of Information and Control, Dalian University of Technology, Dalian 116024, China
2.State Key Laboratory of Robotics, Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
推荐引用方式
GB/T 7714
Bai M,Zhuang Y,Wang W. Statistical layout of improved image descriptor for pedestrian detection[J]. ICIC Express Letters,2010,4(5 B):1931-1936.
APA Bai M,Zhuang Y,&Wang W.(2010).Statistical layout of improved image descriptor for pedestrian detection.ICIC Express Letters,4(5 B),1931-1936.
MLA Bai M,et al."Statistical layout of improved image descriptor for pedestrian detection".ICIC Express Letters 4.5 B(2010):1931-1936.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Bai M(白明)]的文章
[Zhuang Y(庄严)]的文章
[Wang W(王伟)]的文章
百度学术
百度学术中相似的文章
[Bai M(白明)]的文章
[Zhuang Y(庄严)]的文章
[Wang W(王伟)]的文章
必应学术
必应学术中相似的文章
[Bai M(白明)]的文章
[Zhuang Y(庄严)]的文章
[Wang W(王伟)]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。