SIA OpenIR  > 机器人学研究室
基于藻类细胞的微型机器人控制方法及应用研究
其他题名Research of Microrobots based on Algal Cells: Motion Control and Application
解双喜1,2
导师童兆宏 ; 刘连庆 ; 焦念东
分类号TP242
关键词微型机器人 藻类细胞 定向控制 生物粘性微泵 生物混合微系统
索取号TP242/X53/2017
页数122页
学位专业检测技术与自动化装置
学位名称博士
2017-05-26
学位授予单位中国科学院沈阳自动化研究所
学位授予地点沈阳
作者部门机器人学研究室
摘要微型机器人在生物医疗、微尺度环境监测、微尺度装配等领域具有重要的应用价值,因而受到研究者的广泛关注。目前研究者已经研制出不同类型的微型机器人,但是传统的微型机器人面临着驱动以及能量供给和控制信息传递等问题,为了突破这些限制,新型的微型机器人-微生物机器人应运而生,特别是在靶向治疗、体外检测、微纳器件等领域更是表现出传统微型机器人无法比拟的优势,然而目前微生物机器人的研究尚处于起步阶段,往往存在着生命周期短、环境鲁棒性差、驱动力小、控制精度差、集成度低、缺少必要的预测模型等诸多问题,针对微生物机器人科学技术发展的需求,本文将以藻类细胞微生物为主体,研究藻类细胞的光驱动操控方法及图形化方法,构建基于藻类细胞的生物粘性微泵,并探索藻类细胞与外部功能部件的集成技术,尝试开发新型的基于藻类细胞的生物混合微系统,从而实现机器人化定位、游动以及装载、运输和卸载货物等微尺度作业任务。研究内容主要包括以下四个方面: (1)藻类细胞机器人生物学特性研究:通过对藻类细胞鞭毛马达分子结构的分析,阐明藻类细胞鞭毛摆动机理,结合实验测量,建立起藻类细胞机器人游动的三球模型,利用有限元分析获取藻类细胞游动时周围流场分布,从理论上对藻类细胞的游动机制进行诠释。进一步将光照参数耦合到三球模型中,阐明藻类细胞机器人在光源刺激下的转向机制。获取藻类细胞的运动轨迹及运动速度,并进行统计学分析。最后对藻类细胞在低雷诺数环境下的流体动力学理论进行研究,并首次提出基于原子力显微镜的单个藻细胞游动力测量方法和计算模型。 (2)藻类细胞机器人控制方法研究:在对藻类细胞的生物学特性研究的基础上,开展藻类细胞机器人控制方法的研究,首先在旋转运动方面,建立细胞转动状态模型,并从实验上对这一模型进行验证。进而对影响细胞转动速度的外界因素进行研究,提出温度控制细胞转动速度方法,并从实验上证实。在平移运动方面,结合藻类细胞的趋光性,自主设计并搭建自动化的藻类细胞光引导系统,完成对藻类细胞在直线形微管道中的往复运动控制。在此基础上,对系统的性能进行测试和分析,并进一步完善系统结构。结合视觉反馈技术,对藻类细胞在二维平面的沿任意轨迹的运动控制进行实验验证。 (3)基于藻类细胞机器人的生物粘性微泵研究:在对藻类细胞旋转控制方法研究的基础上,开展利用莱茵衣藻细胞的旋转运动构建生物粘性微泵的研究。首先阐明生物粘性微泵工作机理,结合多物理场有限元分析,对影响生物粘性微泵性能的因素(偏心率、细胞转速)进行详细讨论,建立各个参数与粘性微泵流速关系曲线。为了实现对细胞的操作及旋转控制,搭建光诱导介电泳系统,建立细胞在光诱导介电泳环境中的极化模型-双壳模型,结合有限元分析,获取细胞受到的光诱导介电泳力,进而建立细胞在光诱导介电泳微环境中的受力模型。利用光诱导介电泳方法,对莱茵衣藻细胞进行捕获、移动以及图形化处理。提出改变照射光的光照强度调节莱茵衣藻细胞旋转速度的方法,并从实验上进行证实。最后利用单个粒子示踪方法,测试细胞粘性微泵性能。 (4)基于藻类细胞机器人的生物混合微系统研究:在对藻类细胞平移运动控制方法研究的基础上,开展基于藻类细胞机器人的生物混合微系统研究。开发基于数字微镜设备的调制投影印刷(DMPP)系统,实现无模板的、自动化的、高速的生物混合微系统中微结构(功能部件)制作。进一步独创性的提出特异性粘附方法,实现藻类细胞和微结构的可控集成,并从实验上证实藻类细胞机器人对微结构准确的拾取,可控的传输,以及到达目的地后精确的释放。在此基础上,结合光牵引方式,开展藻类细胞和微结构的定点、定量的粘附研究,并对藻类细胞机器人对微结构的协同驱动效果进行测试分析。最后为了进一步提升生物混合微系统的应用范围,开展光场和磁场复合控制的研究。搭建电磁驱动(EMA)系统,并创新性的在该系统中集成可自动化控制的微型LED,完成对藻类细胞和磁性微球集成结构的磁场控制和光场控制实验验证。 本文的研究工作为微生物机器人的研究提供了一定的理论基础,为构建新型的生物混合微系统,开发具有机器人化定位、游动以及装载、运输和卸载货物能力的微型作业机器人提供了相关技术支持。
其他摘要Microrobots have great application values in bio-medical, microscale environment detection, microscale assembly and other applications, so many researchers have paid extensive attention to the microrobots. Currently, scientists have developed different kinds of microrobots, while the traditional microrobots still have troubles in drive, energy supply and control information transfer and so on. In order to break through these limitations, new type of microrobots-microbial robots arise at the historic moment, which have incomparable advantages compared with traditional microrobots, especially in targeted therapy, vitro test, micro-nano devices and other fields. While the research of microbial robots is still in its infancy, there still many problems, including short life cycle, poor environmental robustness, small driving force, poor control accuracy, low level of integration, lack of necessary prediction model and so on. For developing requirements of microbial robots, in this paper, the light driving control method and patterning of algal cells will be studied. Then we will research construction of biological viscous micropump based on algal cells. The integration technology between algal cells with external functional unit will be explored, and the new type of bio-hybrid microsystem based on algal cells will be developed. Finally, we will realize robotic location, swimming, loading, transporting and uploading cargo. This thesis mainly includes the following four contents: (1) Biological characteristics of algal microrobots research: The mechanism of flagellar beat of algal cell is clarified through the analysis of the molecular structure of flagellar motor. The three-sphere model of algal microrobot is established combined with the experimental measurement. Finite element analysis is used to obtain the flow fields around the cell induced by flagellar beat, which can well explain swimming mechanism of algal cell from theory. Further, the steering mechanism under the light stimulus of algal microrobot is clarified by couple illumination parameter into the three-sphere model. The trajectories and swimming velocities of algal cells are got and analyzed statistically, and the kinematic theories of algal cell are studied at low Reynolds numbers. Finally, the model and method based on an atomic force microscope (AFM) are first developed to measure the swimming force of algal cell. (2) Control methods of algal microrobots research: Control methods of algal microrobots are studied based on the research results of biological characteristics. In terms of rotation motion, rotational state model is built, which is validated by experiments. Further, the external factors, which have effect on rotational speed of algal cell, are studied. Control the rotational speed by temperature is put forward and confirmed experimentally. In terms of translational motion, a novel and automatic algae guiding system (AGS) is developed combined the phototaxis of algal cells, which can control the cells swim back and forth in microchannel. On this basis, the performance of the system is tested and analyzed, and structure is further improved. Combined with visual feedback technology, algal cells’ motions along arbitrarily set trajectories in a two-dimensional plane are realized experimentally. (3) Study of biological viscous micropump based on algal microrobots: Biological viscous micropump using rotation motion of Chlamydomonas reinhardtii (C. reinhardtii) cells are studied based on the research results of control method for rotation motion. Firstly, the working mechanism of biological viscous micropump is elucidated. The factors (eccentricity, cell rotational rate) are detailed discussed, which may influence the performance of biological viscous micropump. The relationship between flow velocity of biological viscous micropump and these factors are established combined with multiphysics finite element analysis. In order to operate and control rotation of the cells, optically induced dielectrophoresis (ODEP) system is built. Polarization model-two shell model is established, the ODEP force acting on a cell is obtained combined with finite element analysis, and then mechanical model of the cell in an ODEP micro-environment is established. The trapping, transportation and pattern of C. reinhardtii cells are verified according to the proposed approach. The method of varying the optical intensity is proposed to regulate rotation speed of the C. reinhardtii cells, which is also varied experimentally. Finally, the performance of biological viscous micropump is tested using single particle tracking method. (4) Study of bio-hybrid microsystems based on algal microrobots: Bio-hybrid microsystems based on algal microrobots are studied based on the research results of control method for translational motion. Digital micromirror device-based modulating projection printing (DMPP) system is developed to fabricate microstructures (functional unit) in bio-hybrid microsystems, which shows the benefits of templateless, automation, and high-throughput capability. Original specific adhesion method is put forward to realize the controllable integration of algal cells and microstructure. The microstructures can be accurately picked up, controllably transported and dropped off at the destination by algal microrobots, which is confirmed experimentally. On this basis, adhesion between C. reinhardtii cells and microstructures with controllable numbers at special position is studied combined optical guiding method, and the synergy drive effect of algal microrobots is analyzed. Finally, in order to further expand the applied range of the bio-hybrid microsystems, light field and magnetic field compound control is studied. Electromagnetic actuation (EMA) system is designed, the micro LEDs are innovative integrated into the system, which can be controlled automatically. The movement of cell with magnetic microbead attached under the control of optical field and magnetic field is verified experimentally. The research in this dissertation enriches theory of microbial robots research, and supplies the support of theory and technique for building new type of bio-hybrid microsystem and developing novel microrobot with the capacities of robotic location, swimming, loading, transporting and uploading cargo.
语种中文
产权排序1
文献类型学位论文
条目标识符http://ir.sia.cn/handle/173321/20561
专题机器人学研究室
作者单位1.中国科学院沈阳自动化研究所
2.中国科学院大学
推荐引用方式
GB/T 7714
解双喜. 基于藻类细胞的微型机器人控制方法及应用研究[D]. 沈阳. 中国科学院沈阳自动化研究所,2017.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
基于藻类细胞的微型机器人控制方法及应用研(20351KB)学位论文 开放获取CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[解双喜]的文章
百度学术
百度学术中相似的文章
[解双喜]的文章
必应学术
必应学术中相似的文章
[解双喜]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。