SIA OpenIR  > 光电信息技术研究室
Step-by-step pipeline processing approach for line segment detection
Shao CY(邵春艳); Ding QH(丁庆海); Luo HB(罗海波); Chang Z(常铮); Zhang, Chi; Zheng, Tianjiang
作者部门光电信息技术研究室
关键词Image Segmentation Affine Transforms Edge Detection Eigenvalues And Eigenfunctions Line Segment Detection Step-by-step Pipeline Processing Approach Resistant To Affine Transformation And monoTonic Intensity Change descripTor Ratmic Descriptor Canny Detector Harris Corner Detector Regions Of Interest
发表期刊IET Image Processing
ISSN1751-9659
2017
卷号11期号:6页码:416-424
收录类别SCI ; EI
EI收录号20172503793568
WOS记录号WOS:000403406800009
产权排序2
资助机构National Science and Technology Support Project [2014BAF10B00] ; Major science and technology special fund for projects of Zhejiang Province [2015C01SA750002] ; Natural Science Foundation of Ningbo [2015A610144] ; Ningbo international cooperation project [2015D10010]
摘要This study proposes a line segment detection that can efficiently and effectively handle non-linear uniform intensity changes. The presented sketching algorithm applies the resistant to affine transformation and monotonic intensity change (RATMIC) descriptor to conduct binary translation in the image pre-processing step, which can remove the unwanted smoothing of the Canny detector in most line detections. The Harris corner detector is applied to catch regions of line segments for the purpose of simulating the composition of sketching and achieving a sense of unity within the picture. Furthermore, the RATMIC descriptor is employed to obtain binary images of the regions of interest (ROIs). Finally, small eigenvalue analysis is implemented to detect straight lines in the ROIs. The experiments conducted on various images with image rotation, scaling, and translation validate the effectiveness of the proposed method. The experimental results also demonstrate that about 30% in the overall coverage of major lines and 20% in the coverage per major line are increased compared with the state-of-the-art line detectors. Moreover, the performance of the proposed method produces a combined advantage of ~17% in the coverage of line segments over the line segment detector with noisy images.
语种英语
WOS标题词Science & Technology ; Technology
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic ; Imaging Science & Photographic Technology
关键词[WOS]TECTONIC LINEAMENT ANALYSIS ; MATLAB-BASED TOOLBOX ; HOUGH TRANSFORM ; CORNER DETECTION ; SATELLITE IMAGES ; EXTRACTION ; ALGORITHM ; TECLINES ; DEMS
WOS研究方向Computer Science ; Engineering ; Imaging Science & Photographic Technology
引用统计
文献类型期刊论文
条目标识符http://ir.sia.cn/handle/173321/20751
专题光电信息技术研究室
通讯作者Shao CY(邵春艳)
作者单位1.Key Laboratory of Robotics and Intelligent Manufacturing Equipment Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
2.Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
3.Key Laboratory of Opt-Electronic Information Processing, Chinese Academy of Sciences, Shenyang 110016, China
4.Space Star Technology Co., Ltd., Beijing, 100086, China
推荐引用方式
GB/T 7714
Shao CY,Ding QH,Luo HB,et al. Step-by-step pipeline processing approach for line segment detection[J]. IET Image Processing,2017,11(6):416-424.
APA Shao CY,Ding QH,Luo HB,Chang Z,Zhang, Chi,&Zheng, Tianjiang.(2017).Step-by-step pipeline processing approach for line segment detection.IET Image Processing,11(6),416-424.
MLA Shao CY,et al."Step-by-step pipeline processing approach for line segment detection".IET Image Processing 11.6(2017):416-424.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Step-by-step pipelin(5782KB)期刊论文作者接受稿开放获取ODC PDDL浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Shao CY(邵春艳)]的文章
[Ding QH(丁庆海)]的文章
[Luo HB(罗海波)]的文章
百度学术
百度学术中相似的文章
[Shao CY(邵春艳)]的文章
[Ding QH(丁庆海)]的文章
[Luo HB(罗海波)]的文章
必应学术
必应学术中相似的文章
[Shao CY(邵春艳)]的文章
[Ding QH(丁庆海)]的文章
[Luo HB(罗海波)]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Step-by-step pipeline processing approach for line segment detection.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。